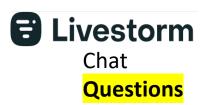


L'IA en Sciences du Vivant

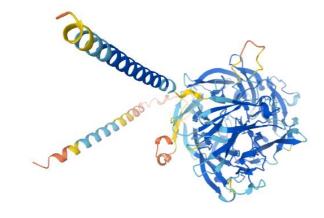

Séance introductive

14h - Présentation du cycle d'animations

Julien Chiquet, UMR MIA Paris Saclay, INRAE Marie-Laure Martin, Institut of Plants Sciences Paris-Saclay & UMR MIA Paris Saclay, INRAE Christèle Robert-Granié, UMR GenPhySE, INRAE

14h30 - Introduction à l'IA et au Machine learning

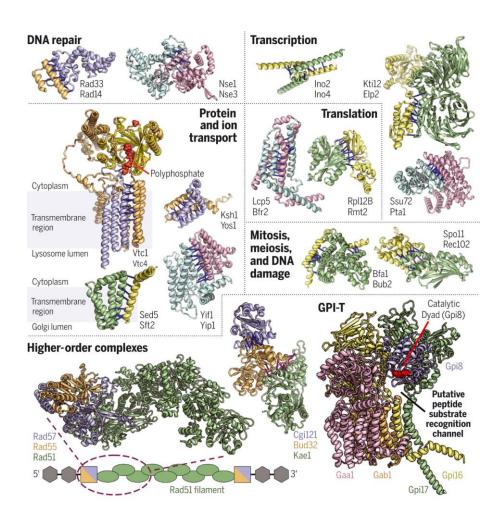
Liva Railavola, Head of Al Research at Criteo Al Lab


Une avancée remarquable grâce à l'IA

La prédiction de la structure des protéines (depuis 2018)

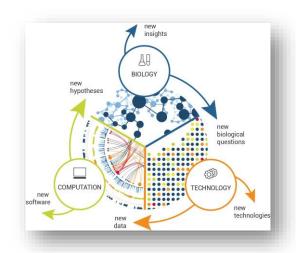
AlphaFold a des résultats presque aussi bon que ceux qu'il est possible d'atteindre avec des observations expérimentales

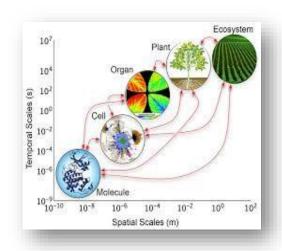
3D viewer ② Model Confidence: Very high (pLDDT > 90) Confident (90 > pLDDT > 70) Low (70 > pLDDT > 50) Very low (pLDDT < 50) AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.


T-cell immunomodulatory protein homolog

https://alphafold.ebi.ac.uk/

La prédiction d'interaction protéine-protéine chez la levure


Humphreys et al (2021)



DIGIT-BIO

Biologie numérique pour explorer et prédire le vivant

- Décloisonner les communautés : règnes/objets, échelles, disciplines
- Soutenir les recherches sur des objets d'étude plus complexes, en mobilisant les approches interdisciplinaires et dans un cadre *open/fair* science
- Accompagner la « mathématisation » de la biologie en combinant défis en biologie et défis en sciences des données et du numérique

La cellule d'animation IA de DIGIT-BIO

Christèle Robert-Granié DR1 INRAE, GA UMR GenPhySE

Julien Chiquet
DR2 INRAE, MathNum
UMR MIA Paris-Saclay

Marie-Laure Martin
DR2 INRAE, BAP
Institut of Plants Sciences Paris-Saclay
UMR MIA Paris-Saclay

Nos objectifs

- Mettre en place un vocabulaire partagé sur les méthodes de l'IA
- Sensibiliser aux questions liées à l'IA propres aux sciences du vivant
- Identifier des questions biologiques pour lesquelles des développements en IA méritent d'être poursuivis

Une animation en trois temps pour construire une communauté

Séquence 1: concepts en IA

Mettre en place un vocabulaire partagé sur les méthodes de l'IA Sensibiliser aux questions liées à l'IA propres aux sciences du vivant

Séquence 2: tour d'horizon et illustrations (2ème semestre 2022)

Présenter des projets en science du vivant et utilisant l'IA

Résidentiel : pour aller plus loin ensemble (2023)

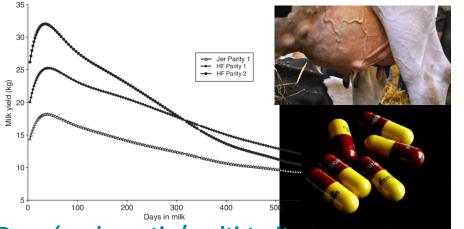
Identifier des questions biologiques pour lesquelles des développements en IA méritent d'être poursuivis

Exemple en apprentissage supervisé (prédiction/régression)

Projet digit-bio GenIALearn

Consortium:

- Généticiens GA GABI (équipe BIGE et G2B)
- Statisticiens/informaticiens (MathNum MIA Paris, IBISC Univ. d'Évry)


Objectif: Évaluer les performances des méthodes de Machine Learning (méthodes d'ensemble et apprentissage profond) pour la prédiction conjointe de multiples caractères, par intégration de données massives de génotypage.

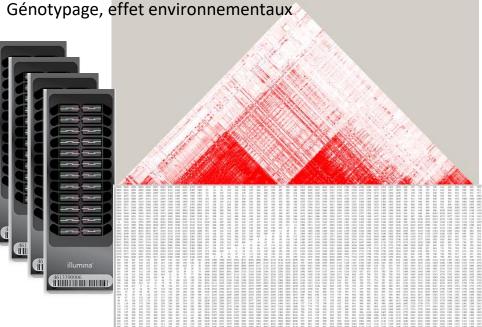
Jeu de données: 100,000 Bovins x 50,000 SNP x 30 caractères

Compétiteurs:

- État de l'art: BLUP (modèle mixte); méthodes bayésiennes
- Méthodes ensemblistes: random forest, gradient boosting
- Apprentissage profond : réseaux de neurones

100,000 lignes, 30 colonnes, corrélation, normalisation

Données de sortie/multi-traits


traitement, production, bien être

Apprentissage supervisée

- construction d'un sous espace de représentation des entrées calibrés pour optimiser la prédiction des sorties
 - gourmand en données
 - gourmand en temps de calcul

Données d'entrée/prédicteurs

Méthodes ensemblistes

- génération de combinaisons d'effet non linéaires
- sélection de variable
- rééchantillonnage

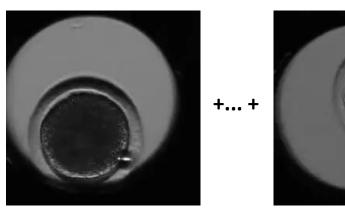
Apprentissage profond

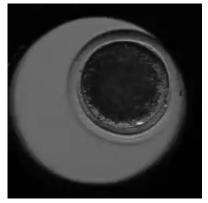
- choix d'une architecture
- espace de représentation non-linéaire

100,000 lignes, 50,000 colonnes, structure cachée

Exemple en apprentissage supervisé (prédiction/classification)

Projet digit-bio BovMovie2Pred


Consortium:


- Biologiste reproduction animale (PHASE UMR BREED)
- Statisticiens/informaticiens (MathNum MIA Paris-Saclay, MaIAGE, INRIA SERPICO)

Contexte: Les performances actuelles de la FIV et du transfert embryonnaire chez les bovins avoisinent 30 %. La sélection des embryons est basée sur une classification à J7 après fécondation.

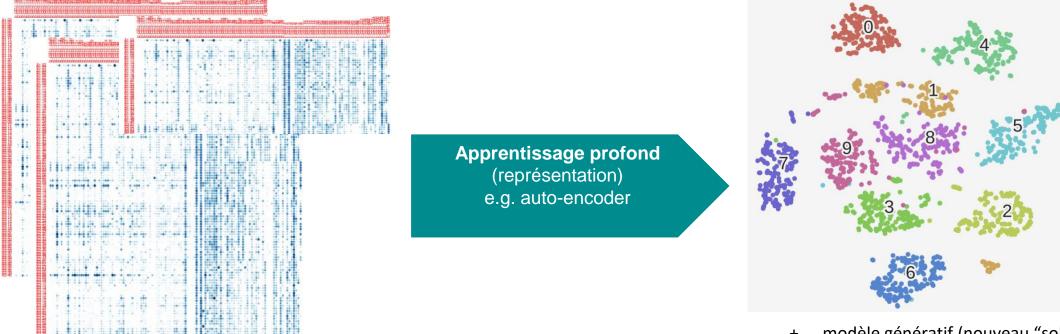
Objectif: aide à la sélection des embryons par classification précoce de vidéos sans annotations expertes

Jeu de données: 300 vidéos d'embryogenèse labélisée en 8 groupes

Apprentissage (profond)
(représentation + prédiction)

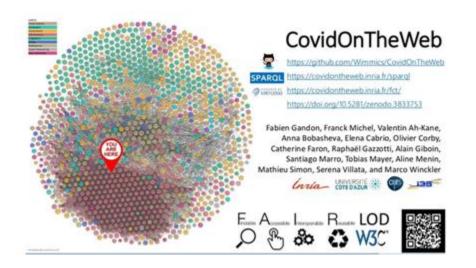
data challenge

Classifieur à J+1 ... J+7

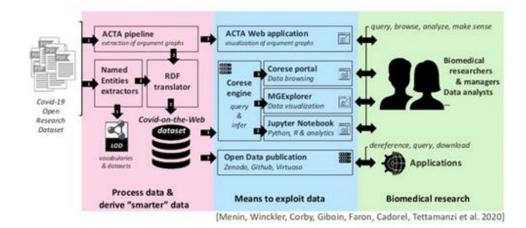

 évaluation ensemble test

Exemple en apprentissage non supervisé Clustering, réduction de dimension, visualisation

Contexte: méta-analyse de communautés bactériennes de sols observés par séquençage


Objectif: clustering; visualisation; étude de la spécificité des sols; groupe/pattern de communautés bactériennes partagées dans différents environnements

Jeu de données: 8 études de sols (5,000 échantillons, 1,800 OTU communes)

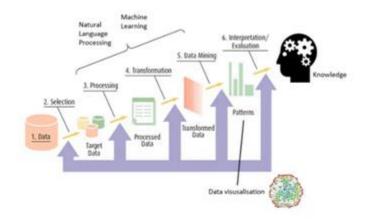

+ modèle génératif (nouveau "sol" plausible)

Exemple en Natural Language Processing (NLP) et web sémantique

COVID ON THE WEB [ISWC 2020, IC 2021]

Domaines d'applications

Biologie


Génomique

Santé

Bibliométrie : extraire la connaissance

Analyse de sons, language

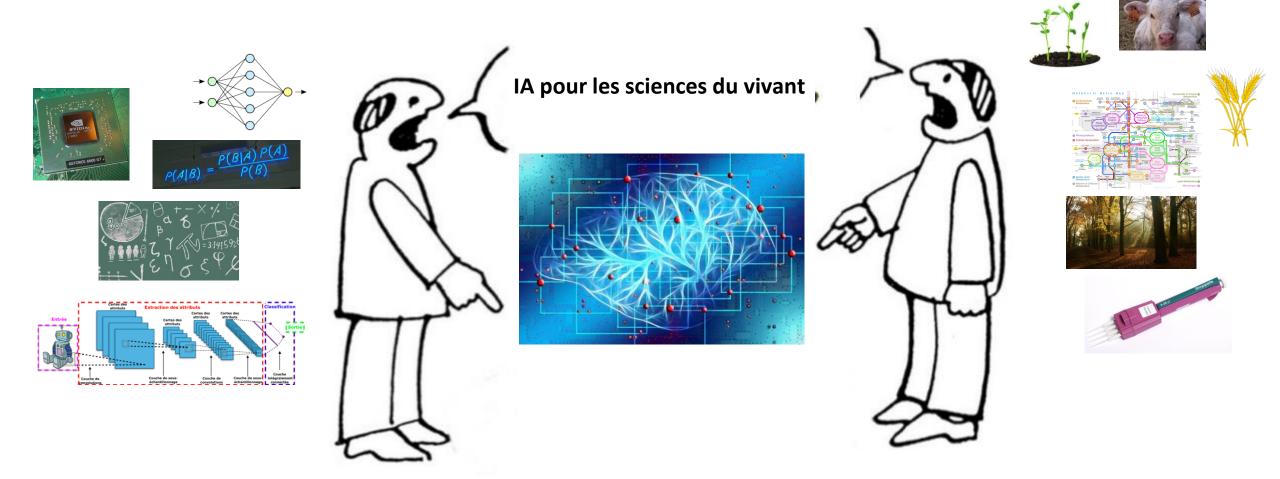
• • • •

Phase de prétraitement : du texte aux données Phase de standardisation : interopérabilité des

différents corpus de données

Phase d'apprentissage : des données au modèle,

donner du sens aux données, visualisation


Phase de validation

Séquence 1: concepts en IA

Date			Lieu	Orateur	Titre
31/01/22	14:00 - 17:00	distanciel	Séance 0		Séance introductive
	14:00 - 14:30		Ouverture	Organisateurs	Digit-BIO & IA
	14:30 - 17:00		Cours	Liva Ravailova	Introduction à l'IA et au machine learning
07/04/22	14:00 - 17:00	hybride	Séance 1		Machine learning pour la classification supervisée
	14:00 - 15:30		Cours	Blaise Hanczar	De la régression logistique aux réseaux de neurones
	16:00 - 17:00		Étude de cas	Fadwa Fatmaoui , Emmanuel Moebel	Le deep learning et la cryo-tomographie électronique permettent l'identification et la localisation de nucléosomes in situ
23/05/22	14:00 - 17:00	distanciel	Séance 2		Identification de structure par classification non-supervisée
	14:00 - 15:30		Cours	Cathy Maugis	Du modèle de mélanges aux réseaux de neurones
	16:00 - 17:00		Étude de cas	Sophie Donnet, François Massol	Apprentissage non supervisé de structures de réseaux écologiques
juillet		distanciel	Séance 3		Identification de structure par réduction de dimension
			Cours	Stéphanie Allassonnière	De l'ACP au VAE
			Étude de cas	Olivier Gandrillon, Franck Picard	TBA

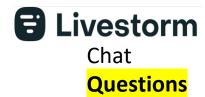
En construction pour septembre/octobre : une séance sur le web sémantique et Natural Language Processing (NLP)

L'IA nécessite une forte interdisciplinarité

Ne pensez que les autres savent mieux que vous Posez des questions Faites attention au vocabulaire que vous employez Essayez de changer de point de vue Apprenons ensemble!

Séance introductive

14h30 - Introduction à l'IA et au Machine learning


Liva Railavola, Head of Al Research at Criteo Al Lab

Liva Ralaivola

Head of AI Research at Criteo AI Lab

Criteo AI Lab

