

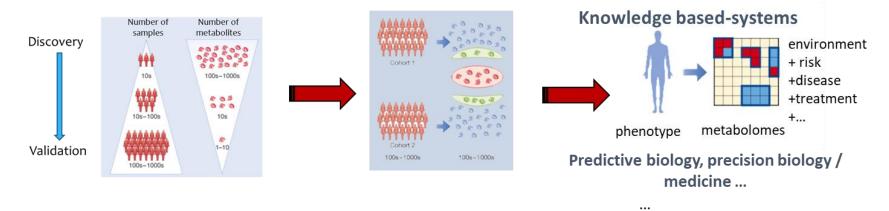
INRAØ

Interoperability and multi-source data integration in metabolomics for the identification common Metabomic Syndrome phenotypes <u>Elfried Salanon</u>¹

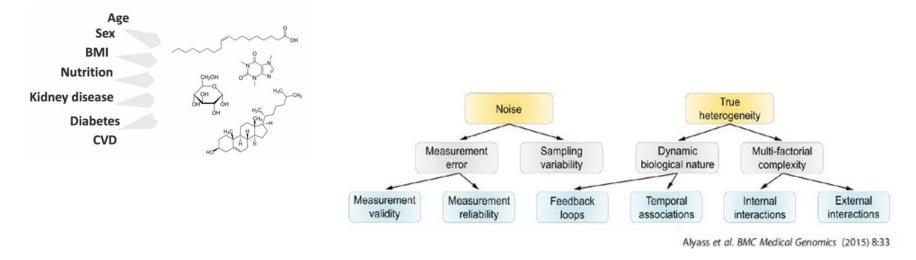
Direction: Blandine Comte¹, Julien Boccard², Estelle Pujos-Guillot¹

¹University of Clermont Auvergne, INRAE, UNH, Metabolism Exploration Platform, MetaboHUB Clermont, Clermont-Ferrand, France ²School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland

Publications: 5 (1 Published, 1 Under review, 3 in prep) Communications: 5 (2 oral com; 3 Posters) Invention reports: 2 Startup in incubation: 1 ANR submitted: 1 (Ongoing)

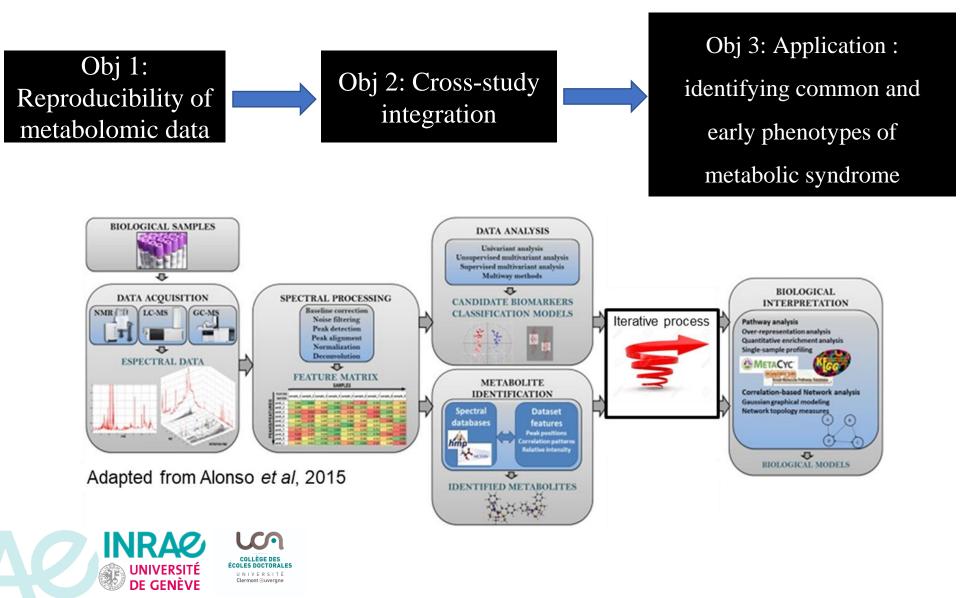


Memorial Sloan Kettering Cancer Center


BETTER PREDICT PHENOTYPES

Metabolomics:

- Study of all the small molecules present in a biological matrix. (Fiehn et al, 2000).
- Powerful phenotyping tool (*Hajjar et al.*, 2023)



Metabolomics Data complexity

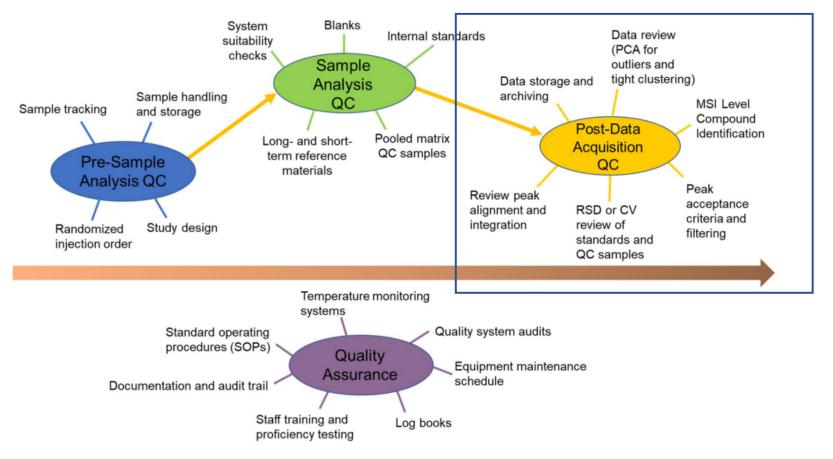
Lack of metabolomics data interoperability, preventing intercomparisons across studies and limiting their impact in precision biology (*Hajjar et al., 2023*)

GENERAL OBJECTIVE: TO INVESTIGATE INTEROPERABILITY BETWEEN METABOLOMICS DATA FROM INDIVIDUALS ANALYSED IN DIFFERENT HEALTH STATUS

INRA

Visualization of the bivariate dispersion structure for the robust assessment of the repeatability and reproducibility of analytical measurements.

Elfried Salanon¹


Direction: Blandine Comte¹, Julien Boccard², Estelle Pujos-Guillot¹

¹University of Clermont Auvergne, INRAE, UNH, Metabolism Exploration Platform, MetaboHUB Clermont, Clermont-Ferrand, France ²School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland

> DIGIT-BIO INRAE metaprograme

ASSESSMENT OF MEASUREMENTS ERRORS

Challenges:

- •Analytical variability comes from multiple sources.
- •Classical indicators poorly describe these issues.

(Anne Evans et al, 2020)

See you around the Poster

Visualization of the bivariate dispersion structure for the robust assessment of the repeatability and reproducibility of analytical measurements. Elfried Salanon¹, Blandine Comte¹, Delphine Centeno¹, Stéphanie Durand¹, Estelle Pujos-Guillot¹, Julien Boccard²

PassForme

Université Clemont Auvergne, 19848, UNH, Paterlame d'Exploration du Mitaboliume, Matabolikulë Clemont, Clemont Ferrand, France

School of Pharmaceutical Sciences, University of Geneva, Geneva, Bullzerland

Introduction

ŝ

Challenges:

- Assessment of measurements errors: Repeated measurements of QC samples.
- Analytical variability comes from multiple sources. Classical indicators poorly describe these issues.

INRAØ

- Calculation of quality indicators for each detected variable.

CALCENTRY OF CALVERSITE

Use of dispersion indicators

Objective: Develop a visualization method to better capture and understand the dispersion structure.

Methods

Intrabatch dispension

IntraD = median(A, - B_)

with the d,..., h and their

Software

Conclusion:

References

#10.1016/j.chemolab.2024.105148

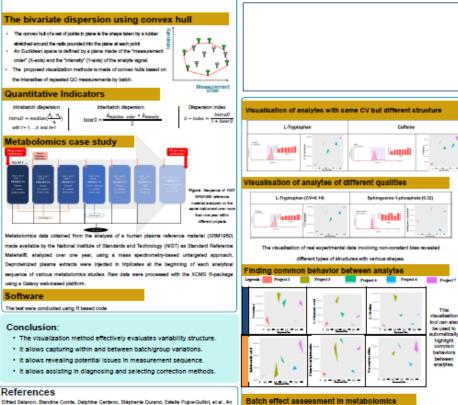
etaprogramme and Geneva University

All metabolomics analyses were funded and performed within the

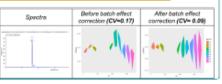
recipient of a doctoral fellowship from the INRAE DIGIT BIO

Metabol-LiB French infrastructure (AVR-11-NR9-0010), E. Salaron ia

alternative for the robust assessment of the repeatability and reproducibility of analytical measurements


Corresponding author:

FITM SALANON


etted asianon@inset

using bivariate dispersion. Chemometrics and Intelligent Laboratory Systems, 2024, 250, pp.105148.

Results

Batch effect assessment in metabolomics

DIGIT-BIO