

DeepSelectGene - Apprentissage profond à partir de données de génotypes et application à la sélection génomique

(01/12/2023 - 01/12/2026)

Doctorante: Sihan XIE (Université Paris-Saclay, AgroParisTech, INRAE, GABI-UMR1313, 78350 Jouy-en-Josas, France) Presented by Julien CHIQUET (MIA-PS, Université Paris-Saclay, AgroParisTech, INRAE, France)

Séminaire du Métaprogramme DIGIT-BIO : 12 et 13 décembre 2024, Hôtel Valpré - Ecully

- $\hfill \square$ Axe 1 : Décryptage multi-échelle des fonctions du vivant
- Axe 2 : Prédiction de phénotypes
- ☐ Axe 3 : Transfert et généralisation
- ☐ Axe 4 : Jumeaux numériques

Contexte et Enjeux

Technologies de séquençage en sélection génomique

- Données de génotypage haute densité (G)
- Prédiction de phénotypes de descendants (valeur génétique) (P)

Difficultés et Limites des modèles classiques (GBLUP)

- Gestion de données de grande dimension
- Limités aux interactions GxG, GxP, PxP simples et linéaires

Thèse de Sihan Xie

Objectif: nouveaux modèles d'apprentissage profond (DL)

- Adapter les modèles de DL aux données génomiques
- Modéliser des interactions complexes pour mieux prédire
- Gérer le peu d'exemples disponibles (génération de génotypes)

Encadrement interdisciplinaire

- Eric Barrey (GABI, INRAE)
 Génétique animale
- Julien Chiquet (MIA Paris-Saclay)
 Modèle et Apprentissage statistiques
- ► Blaise Hanczar (IBISC, UEVE)

 DL pour les données génomique

Données d'apprentissage

DeepSelectGene

Génotypage: Single Nucleotide Polymorphism (SNP)

Variation nucléotidique en une position du génome d'un individu vis-à-vis d'une population, codée avec 3 valeurs $\{0, 1, 2\}$.

- Biologiquement,
 - 0 = Homozygote pour l'allèle de référence
 - 1 = Hétérozygote
 - 2 = Homozygote pour l'allèle alternatif
- Statistiquement, il s'agit d'un comptage de l'allèle alternatif.

Génotypage: Single Nucleotide Polymorphism (SNP)

Variation nucléotidique en une position du génome d'un individu vis-à-vis d'une population, codée avec 3 valeurs {0,1,2}.

- Biologiquement,
 - 0 = Homozygote pour l'allèle de référence
 - 1 = Hétérozygote
 - 2 = Homozygote pour l'allèle alternatif
- Statistiquement, il s'agit d'un comptage de l'allèle alternatif.

Les jeux de données de la thèse (génotype + phénotype)

- $ho \approx 10 K$ chevaux : 44K SNPs + 3 phenotypes
- ightharpoonup pprox 100 K vaches Holstein : 54K SNPs + 33 phenotypes
- ightharpoonup pprox 500 K humains (UKBioBank) : 800K SNPs et Indels + des dizaines de mesures corporelles

DeepSelectGene

Objectif 1 : Génération ou simulation artificielle de génotypes

Motivation : nombre d'exemple de génotypage limité

- Caractère privés, accès limités, répétition à l'envie impossible
- Idée : générer des données de manière confidentielle et simuler des populations spécifiques à des fins de recherche

Objectif 1 : Génération ou simulation artificielle de génotypes

Motivation : nombre d'exemple de génotypage limité

- Caractère privés, accès limités, répétition à l'envie impossible
- Idée : générer des données de manière confidentielle et simuler des populations spécifiques à des fins de recherche

Formalisation du problème

Pour m loci identifiés et deux phénotypes d'intérêt, on note

- ▶ **G** = $(g_1, g_2, ..., g_m)$ le vecteur des SNPs où $g_i \in \{0, 1, 2\}$,
- le sexe S (binaire) et la taille H (continue).

Objectif 1 : Génération ou simulation artificielle de génotypes

Motivation : nombre d'exemple de génotypage limité

- Caractère privés, accès limités, répétition à l'envie impossible
- Idée : générer des données de manière confidentielle et simuler des populations spécifiques à des fins de recherche

Formalisation du problème

Pour m loci identifiés et deux phénotypes d'intérêt, on note

- ▶ **G** = $(g_1, g_2, ..., g_m)$ le vecteur des SNPs où $g_i \in \{0, 1, 2\}$,
- le sexe S (binaire) et la taille H (continue).

Objectif: apprendre $\mathbb{P}(\mathbf{G}|\mathbf{S}=s,\mathbf{H}=h)$ (distribution conjointe multivariée des SNPs conditionnée par **S** et **H**).

Tâche complexe : estimer les fréquences alléliques marginales + les dépendances entre loci + les associations P x G

Objectif 1 : Génération ou simulation artificielle de génotypes

Les modèles considérés :

1. Generative Adversarial Networks (GAN):

Figure – Architecture des GAN

Deux réseaux sont entraînés de manière adversariale

Diffusion Model :

Figure – Architecture de Diffusion Model

Apprendre à débruiter pour générer

Objectif 2 : Prédiction des phénotypes à partir des génotypes

Formalisation du problème

Pour *m* loci identifiés, on note

- ▶ $\mathbf{G} = (g_1, g_2, \dots, g_m)$ le vecteur des SNPs où $g_i \in \{0, 1, 2\}$,
- le sexe **S** et diverses covariables environementales**E**.
- **Y**, le phénotype à prédire (lié à la production laitière chez les vaches, à la performance sportive chez les chevaux, à.).

Objectif 2 : Prédiction des phénotypes à partir des génotypes

Formalisation du problème

Pour m loci identifiés, on note

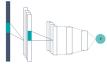
- ▶ $\mathbf{G} = (g_1, g_2, \dots, g_m)$ le vecteur des SNPs où $g_i \in \{0, 1, 2\}$,
- le sexe S et diverses covariables environementales E.
- Y, le phénotype à prédire (lié à la production laitière chez les vaches, à la performance sportive chez les chevaux, à.).

Objectif: apprendre $P(Y \mid G, S, E)$, la distribution conditionnelle aux génotypes et à l'environnement.

Défis : grande dimension et parcimonie des données SNPs

Objectif 2 : Prédiction des phénotypes à partir des génotypes

Les modèles considérés :



Les CNNs ne sont pas adaptés :

Déplacer un motif de SNPs dans la séquence change son sens biologique, car les SNPs ne sont pas invariants au décalage.

Les RNNs ne sont pas adaptés :

Les SNPs ne sont pas des séries temporelles et ne reflètent pas de dépendances temporelles.

Les MLP peuvent être adaptés :

Les MLP traitent les SNP indépendamment.

⇒ De plus, intégrer des connaissances biologiques permettrait de rendre le modèle plus efficace.

Objectif 3 : Génération de profils génomiques maximisant certains caractères d'intérêt

Motivation : Développer un outil d'aide à la sélection animale basé sur des profils génomiques optimaux.

Méthodologie

Inspirée des méthodes d'interpolation des GAN pour explorer l'espace latent

- Combiner et figer nos modèles prédictifs et génératifs
- Explorer l'espace latent du générateur pour maximiser une fonction objective basée sur les prédictions du prédicteur.

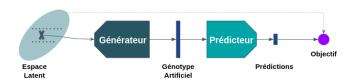
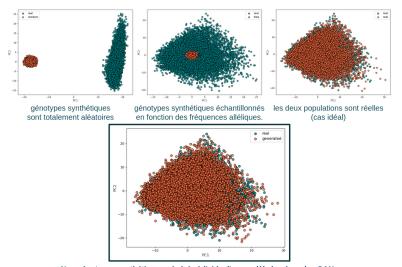


Figure – Schéma de recherche de profils génomiques optimaux

Résultats obtenus

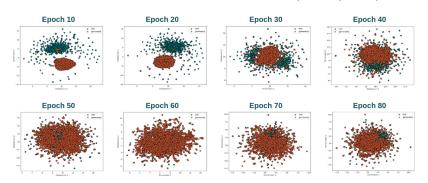
Génération de génotypes artificiels d'un chromosome chez le bovin (pprox 4000 SNPs)



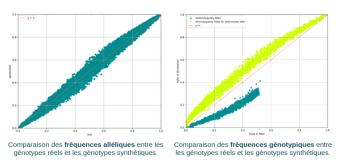
Nos génotypes synthétiques générés à l'aide d'un modèle basé sur les GANs

Résultats obtenus

- Si l'on étend le modèle à l'ensemble des chromosomes chez les bovins (≈ 50K SNPs), le modèle génératif reste-t-il pertinents?
- Oui, mais il est nécessaire de concevoir des réseaux de neurones et des méthodes d'entraînement plus sophistiqués.



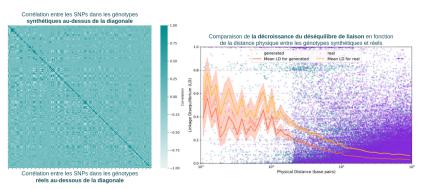
Au delà d'une comparaison visuelle des 2 distributions, d'autres métriques permettent de vérifier si les génotypes artificiels préservent les propriétés biologiques/génétiques des vrais génotypes



Les génotypes synthétiques ont une fréquence allélique similaire, mais plus d'homozygotie pour les allèles alternatifs et moins d'hétérozygotie.

Résultats obtenus

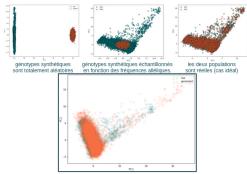
Au delà d'une comparaison visuelle des 2 distributions, d'autres métriques permettent de vérifier si les génotypes artificiels préservent les propriétés biologiques/génétiques des vrais génotypes



Les génotypes synthétiques semblent préserver la structure génétique type déséquilibre de liaison.

Résultats obtenus

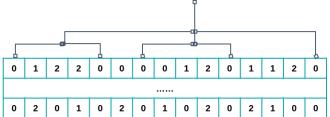
- Les modèles génératifs possèdent-ils l'universalité applicable à d'autres espèces?
- → Pour un jeu de données présentant une plus grande diversité génétique et incluant différentes sous-populations, comme UK Biobank l'apprentissage devient plus complexe.



Améliorations et développements futurs

1. Développement de modèles génératifs conditionnés par les phénotypes pour générer des paires Gx P (en cours)

2. Intégration du Linkage Disequilibrium dans le modèle génératifs (en cours)



K-mers clustering basé sur LD pour vectoriser les SNPs

3. Développement d'un framework d'évaluation pour les génotypes synthétiques (en cours)

➤ Merci de votre attention

