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Introduction

Why dimension reduction:

Training samples:

Smaller dimension representation:
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PCA

Principal Component Analysis (PCA)

PCA creates a visualization of data that minimizes residual variance in the least
squares sense and maximizes the variance of the projection coordinates.
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PCA

Principal Component Analysis (PCA)

Geometrical interpretation Orthogonal direction of maximum variance:

Probabilistic interpretation Assumes a Gaussian distribution: X = µ+ Σ1/2ε,
ε ∼ N (0, Id).

Issue: Finds here the two orthogonal axis for which the cloud is the most
spread (black lines)

W.r.t PCA the two point clouds are equivalent
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PCA

Principal Component Analysis (PCA)

PCA decompostion:

Pros Easy decompostion in practice: only requires finding the eigen vectors of the
empirical covariance matrix
Interpretable
Visualy understandable

Cons Too simple model which reduces the interpretation
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ICA model

Independant Component Analysis:

Data point cloud

Mixture of two Gaussian distributions

Data: one point cloud

Goal: explain these data

How: Extracting the sources which had generated the data
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ICA model

Independent Component Analysis (ICA)

Interpretation of the data (6= Description)

Finds sources which may have generated the cloud

Accounts for non Gaussian distributions (more flexible model)

First estimated source

Second estimated source
Resampling form the model
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ICA model

Difference between PCA and ICA

PCA ICA

Maximum variance axes Source separation
Geometrical (orthogonal axis) Statistical (source points in the plane)

Description of data Explanation and interpretation
Gaussian distribution Many other possible distributions

only e.g. mixtures, continuous or discrete
(see later)
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ICA model General Model

General hierarchical model:

Xi = Aβi + σεi

∗ Observations: X n
1 in (Rd)n

∗ Source matrix: A called decomposition matrix
∗ Gaussian noise: σεi
∗ Independent components: βi ∈ Rp, p << d
→ random vector with independent coordinates

βn
1 hidden variables.

Model: for all images Xi , 1 ≤ i ≤ n
βi,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi .

Various choices of the distribution νη on the independent components
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ICA model General Model

Various examples of distributions:

Independent Factor analysis
βi,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi

For identifiability, νη cannot be Gaussian

νη is a mixture of K 1D Gaussian distributions N (mk , 1), k = 1, ..,K
with weights (wk)1≤k≤K .

η = (mk ,wk)1≤k≤K

θ = (A, σ2, (mk ,wk)1≤k≤K )
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ICA model General Model

Various examples of distributions:

Continuous distributions
βi,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi

νη is either:

Logistic Log(1/2),
Laplacian,
Exponentially scaled Gaussian(EG): βj

i = s ji Y
j
i where Y ∼ N (µ, Id) and

µ = (µ, . . . , µ); s1
i , . . . , s

p
i are independent Exp(1), also independent from Y

(sub-exponential tail)

η = ∅ or µ

θ = (A, σ2) or θ = (A, σ2, µ)
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ICA model General Model

Various examples of distributions:

Discrete distributions
βi,j ∼ νη | η ,∀ 1 ≤ j ≤ p

Xi ∼ N (Aβi , σ
2Id) | A, σ2, βi

Idea: Introduce a switch to cancel some of the decomposition vectors

→ Either binary (“on/off”) or ternary (activate, inhibit, remove)

Bernoulli-censored Gaussian (BG): βj = bjY j with bj ∼ B(α), Y is a
Gaussian vector with distribution N (µ, Id).
Exponentially scaled Bernoulli-censored Gaussian (EBG): mix of EG and
BG
Exponentially-scaled ternary distribution (ET): βj = s jY j , where s1, . . . , sp

are i.i.d. Exp(1). γ = P(Y j = −1) = P(Y j = 1), providing a symmetric
distribution for the components of Y .

θ = (A, σ2, µ, α, γ)
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ICA model Experiments

Samples of the four training sets different level of noise. From left to right and top to
bottom: σ = 0.1, 0.5, 0.8, 1.5
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ICA model Experiments

Results of the PCA decomposition

σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

Cumulative eigen values of the PCA decomposition

Two first Principal Components (orthogonal images).
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ICA model Experiments

Comparison: 30 images per training set

Model/Algo σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

SAEM/Log

EM/IFA

SAEM/BG

FastICA
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ICA model Experiments

Comparison: 50 images per training set

Model/Algo σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

SAEM/Log

EM/IFA

SAEM/BG

FastICA
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ICA model Experiments

Comparison: 100 images per training set

Model/Algo σ = 0.1 σ = 0.5 σ = 0.8 σ = 1.5

SAEM/Log

EM/IFA

SAEM/BG

FastICA
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ICA model Experiments

Handwritten digits from the USPS database

Examples from the training sample
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ICA model Experiments

Handwritten digits from the USPS database

IFA estimated sources
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ICA model Experiments

101 hippocampus deformations (3 populations: Ctrl - Mild AD - AD)

Mean and five decomposition vectors estimated with L-ICA (left) and ET-ICA (right).
Each image has its own colorbar to highlight the major patterns.
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ICA model Experiments

101 hippocampus deformations (3 populations: Ctrl - Mild AD - AD)

Ctrl/AD Ctrl/mild AD
Model L-ICA BG-ICA L-ICA BG-ICA

Mean 0.31 ×10−3 0.33 ×10−3 9.0 ×10−3 1.09 ×10−2

Std dev. 0.16 ×10−3 0.25 ×10−3 3.8 ×10−3 4.6 7.6 ×10−3

Table: Mean and standard deviation of the p-values for the two models with the
decomposition vectors. Means and standard deviations are computed over 50 runs to
separate the Controls from the AD group (left columns) and to separate the Controls
from the mild AD group (right columns). PCA p-values: 0.3× 10−3 and 7.7× 10−3

using 95% of the cumulative variance.
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ICA model Experiments

Preliminary Results on the ADNI database
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ICA model Experiments

Can we go further?

PCA model: too simple

ICA model: interesting but still reduced to linear interpretation

→ may not be able to capture correct features,

→ may not describe the population well.

Need for non linear methods! Auto-encoders emerged as one possible solution...

With many other applications!
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Variational Auto-Encoder - The Idea Auto-Encoder

Auto-Encoder

The objective =⇒ Dimensionnality Reduction

Figure: Simple Auto-Encoder
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Variational Auto-Encoder - The Idea Auto-Encoder

AutoEncoder

Assumptions:

Let x ∈ X be a set a data. We assume that there exists z ∈ Z such that z is
a low dimensional representation of x

The encoder eθ and decoder dφ are functions modelled by neural networks
(NNs) such that θ and φ are the weights of the NNs

Let x ′ be the reconstructed samples, the objective is to have x ' x ′

The Objective function writes:

L = ‖x − x ′‖2 = ‖x − dφ(z)‖2 = ‖x − dφ(eθ(x))‖2

=⇒ The networks are optimised using stochastic gradient descent

φ← φ− ε · ∇φL
θ ← θ − ε · ∇θL
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Variational Auto-Encoder - The Idea Auto-Encoder

AutoEncoder - Shortcomings

What is represented in the latent space?

Figure: Potential latent space

The AutoEncoder was just trained to encode and decode the input data
without information on its structure or distribution.

Can we get more information about the original population?

=⇒ Need for a new framework
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VAE framework The idea

VAE - The Idea

An auto-encoder based model...

Figure: Simple Auto-Encoder

... but where an input data point is encoded as a distribution defined over
the latent space [KW14, RMW14]

Figure: VAE framework
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VAE framework Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x |z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x |z) is
referred to as the decoder

Example:

qprior = N (0, I ), pθ(x |z) =
D∏
i=1

B(πθi (z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.
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VAE framework Mathematical foundations

Variational inference

We have to use Variational Inference:

log pθ(x) = log

(∫
pθ(x |z)qprior(z)dz

)

= log

(∫
pθ(x , z)dz

)
= log

(∫
pθ(x , z)

q(z)

q(z)
dz

)
, for any pdf q

≥
∫ (

log
pθ(x , z)

q(z)

)
q(z)dz , using Jensen’s inequality

≥
∫

(log pθ(x , z)) q(z)dz − H(q(z))

with H the entropy of q(z).

The equality holds for q(z) = qθ(z |x).
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VAE framework Mathematical foundations

Variational inference: The ELBO

Well-know issue: the posterior q(z) = qθ(z |x) is intractable.

−→ use Expectation-Maximization like algorithms (MCMC-SAEM version if
needed)

OR approximate this posterior:

Introduce a parametric approximation:

qφ(z |x) ' pθ(z |x) ,

where for example qφ(z |x) = N (µφ(x),Σφ(x))
This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x , z)

qφ(z |x)
, Ez∼qφ(z|x)[p̂θ(x)] = pθ(x) ,

and the definition of the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Ez∼qφ(z|x)[log(pθ(x , z))− log(qφ(z |x))]

≥ ELBO
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VAE framework Mathematical foundations

Variational inference: The ELBO

Objectives:

1. Optimize the ELBO as a function instead of the target distribution

Use stochastic gradient descent in both θ and φ

2. Optimize the ELBO as a bound to get closer to the target

Use sampling methods to produce samples z ∼ qθ(z |x)
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VAE framework Mathematical foundations

The Reparametrization Trick for stochastic gradient
descent

Since z ∼ N (µφ(x),Σφ(x)), the model is not amenable to gradient descent

(a) Back-propagation impossible

=⇒

(b) Back-propagation possible: samples are
differentiable functions of the parameters

=⇒ Optimization with respect to encoder and decoder parameters made possible !

Objective 1.
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VAE framework Changing the model

Changing the model

General VAE model requires the choice of qprior (z).

→ Most common choice: qprior (z) = N (0, 1).

Pros:

good intial gess,

enables easy computations

Cons:

very restrictive as it is isotropic and monomodal

Can we improve the model itself choosing other distributions?
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VAE framework Changing the model

Other VAE models changing the prior

Literature is full of propositions:

the first one being a mixture of Gaussian distribution (“Approximate
inference for deep latent gaussian mixtures”, “Deep Unsupervised Clustering
with Gaussian Mixture Variational Autoencoders”)

VAE with a VampPrior

up to prior leaning (VQVAE, RAE L2)

Requires to be able optimize the ELBO: many limitations!
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VAE framework Changing the model

Other VAE models changing the distance in the ELBO

One may prefer to change the definition of the distance between probability
distributions.

Weighting the KL−divergence in the ELBO (β − VAE )

Changing from KL−divergence to Wassenstein distance between the data
distribution and the model one (WAE).
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VAE framework Changing the model

Other VAE models changing the Reconstruction metric

One may not want to use the standard L2 norm on images.

metric by patch and no more pixelwise (MSSSIM VAE)

Discriminator extract features and the similarity is between extracted features
(VAEGAN)
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VAE framework Tweaking the approximate posterior distribution

Tweaking the Approximate Posterior Distribution

Concerning Objective 2.

The ELBO can written as

ELBO = log pθ(x)−KL(qφ(z |x)||pθ(z |x))︸ ︷︷ ︸
≈0 if qφ(z|x)≈pθ(z|x)

.

Kullback-Leiber divergence ≥ 0 ⇒ make it vanish by tweaking the
approximate posterior qφ(z |x)

Produce variables z which targets the true posterior pθ(z |x) using a sample
z0 ∼ qinit

How? and how to ensure that the model would still be amenable to the
back-propagation ?
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VAE framework Tweaking the approximate posterior distribution

Solution 1: Normalizing Flows

Use smooth invertible parametrized mappings fψ to “sample” z [RM15]

Apply K transformations to z0 ∼ qinit (here qinit = qφ)

Final random variable zK = f Kx ◦ · · · ◦ f 1
x (z0) ∼ qφ(zK |x) with

qφ(zK |x) = qφ(z0|x)
K∏

k=1

| det Jf kx
|−1 , (1)

Objective 2.

Many references (VAE LinNF, VAE IAF)

although difficult to compute the Jacobian of these maps f K1
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VAE framework Tweaking the approximate posterior distribution

Solution 2: Hamiltonian VAE

Idea = Hybrid Monte Carlo Sampler [No11, DMS17, LBB+19],

Target density

pθ(z |x) =
pθ(x , z)

pθ(x)
∝ pθ(x , z) = πx(z) .

Introduce an auxiliary random variable ρ ∼ N (0,M) called “momentum”

Write the Hamiltonian:

Hx(z , ρ) = − log πx(z , ρ)

= − log πx(z) +
1

2
log((2π)d |M|) + ρ>M−1ρ

= Ux(z) + κ(ρ) .

Sample (z , ρ) with this dynamic.
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VAE framework Tweaking the approximate posterior distribution

Solution 2: Hamiltonian VAE

Use a discretization scheme

ρ(t + ε/2) = ρ(t)− ε

2
· ∇zH(z(t), ρ(t)) ,

z(t + ε) = z(t) + ε · ∇ρ(H(z(t), ρ(t + ε/2))) ,

ρ(t + ε) = ρ(t + ε/2)− ε

2
· ∇zH(z(t + ε), ρ(t + ε/2)) ,

(2)

A proposal (z̃ , ρ̃) is accepted with probability:

α = min
(

1, exp
(
− H(z̃ , ρ̃) + H(z , ρ)

))
=⇒ Creates an ergodic, time-reversible Markov Chain having πx as stationary
distribution.
Note that the Metropolis Hastings’ acceptation step has to be removed for the
back propagation to be possible.

73 / 126



VAE framework Tweaking the approximate posterior distribution

Hamiltonian VAE

The graphical scheme [CDS18]

Figure: Hamiltonian VAE

Issue: Perform poorly when trained on small data set and so we need to define a
new framework

What about geometry?
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VAE framework Tweaking the approximate posterior distribution

Benchmark of many of these methods

For an extensive comparison of the VAE and VAE like models:

https://github.com/clementchadebec/benchmark VAE

Benchmark of the learning strategies

Benchmark of the sampling strategies
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Toward a Geometry-Aware VAE The framework

Defining a New Framework

Assumptions:

As of now the latent space structure was supposed to be Euclidean (i.e.
Z = Rd)

Let us now relax this hypothesis and assume that Z is a Riemannian
manifold endowed with a metric G.

It was shown that exploiting the geometrical aspect of probability
distributions can lead to far more efficient sampling [GCC09, GC11]

Our ideas:

1 Exploit the manifold structure of the latent space to improve the posterior
sampling

2 Learn the metric defined in the latent space

3 Use the learned geometry to generate instead of the prior [CTSBA21]
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Toward a Geometry-Aware VAE The framework

Riemanian geometry principles

Riemanian manifold: (reduced to our model) Rd endowed with a metric G:
M = (Rd ,G).
=⇒ Rd not flat anymore, curved space (as montains)

Figure: Image taken from: Fast Marching Methods on Triangulated Domains : Kimmel, R., and
Sethian, J.A., Proceedings of the National Academy of Sciences, 95, pp. 8341-8435, 1998
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Toward a Geometry-Aware VAE The framework

Riemanian geometry principles

Riemanian manifold: (reduced to our model) Rd endowed with a metric G:
M = (Rd ,G).
=⇒ Rd not flat anymore, curved space (as montains)

Geodesic curves:

Length of a curve γ : [0, 1]→M from z1 to z2 living in a Riemannian
manifold M

L(γ) =

1∫
0

√
〈γ′(t), γ′(t)〉γ(t)dt γ(0) = z1, γ(1) = z2 . (3)

Geodesic paths = curve γ minimizing Eq. (3)
or equivalently minimizing the curve energy

E(γ) =

1∫
0

〈γ′(t), γ′(t)〉γ(t)dt γ(0) = z1, γ(1) = z2 .
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Toward a Geometry-Aware VAE The proposed model

1) Improve Posterior Sampling - Riemannian HMC

Rely on the Riemannian Hamiltonian Monte Carlo Sampler [GC11]:

Introduce a Position-specific random momentum ρ ∼ N (0,G(z))
Simulates the evolution (z(t), ρ(t)) of a particle whose motion is governed by
Hamiltonian dynamics on the manifold

The Hamiltonian writes

HRiem
x (z , ρ) = log ptarget(z) +

1

2
log((2π)D det G(z)) +

1

2
ρ>G(z)−1ρ .

Use of the “Generalized” Leapfrog integrator to sample from ptarget

Pros:

Use the underlying geometry of the data to improve sampling

Cons:

The metric is unknown
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Toward a Geometry-Aware VAE The proposed model

2) Learn the Metric - The Choice of the Metric

Parametric metric: [Lou19]:

G−1(z) =
N∑
i=1

LψiL
>
ψi

exp
(
− ‖z − ci‖2

2

T 2

)
+ λId ,

Lψi lower triangular matrices parametrized using neural networks

T temperature to smooth the metric

ci centroids

λ regularization factor

Pros:

Closed-form expression of the inverse metric =⇒ useful for geodesic
computation

Geodesics travel through most populated areas.
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Toward a Geometry-Aware VAE The proposed model

The Model - Riemannian Hamiltonian VAE

The graphical scheme

Figure: Riemannian Hamiltonian VAE.
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Toward a Geometry-Aware VAE The proposed model

The Learned Latent Space examples

Training samples:

Latent space and interpolations:

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
circles
rings

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
affine
geodesic

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Affine

Geodesic

89 / 126
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Toward a Geometry-Aware VAE The proposed model

3) Improve Data Generation - Sample With the Metric

Idea:

Use a geometry-based sampling procedure: pdf driven by the metric

p(z) =
1S(z)

√
det G−1(z)∫

Rd

1S(z)
√

det G−1(z)dz
,

where S is a compact set and 1S(z) = 1 if z ∈ S , 0 otherwise.

Use of classic MCMC sampler (e.g. Hamiltonian Monte Carlo)

Pros:

G−1 easily computable

Samples “close” to the data
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Toward a Geometry-Aware VAE A new way to generate data

Sampling Comparison

(a) VAE - N (0, I )
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Toward a Geometry-Aware VAE A new way to generate data

Sampling Comparison - Higher Dimension

(a) reduced MNIST (120) (b) reduced EMNIST (120) (c) reduced Fashion (120)
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Data Augmentation

1. Framework

2. Toy Data

3. Medical Imaging
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Data Augmentation - Framework

In
pu

t
da

ta

VAE
modelTrain

Test

CNN model
(training)

Synthetic
data

Validation

CNN model
(trained)

Figure: Data Augmentation pipeline

Performances are estimated using cross-validation.
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Data Augmentation

1. Framework

2. Toy Data

3. Medical Imaging
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Robustness Across Data Sets

Table: Classification results on reduced data sets (∼ 50 samples per class)

MNIST
MNIST EMNIST

FASHION
(unbal.) (unbal.)

Baseline 89.9± 0.6 81.5± 0.7 82.6± 1.4 76.0± 1.5
Baseline + Synthetic

Basic Augmentation (X5) 92.8± 0.4 86.5± 0.9 85.6± 1.3 77.5± 2.0
Basic Augmentation (X10) 88.2± 2.2 82.0± 2.4 85.7± 0.3 79.2± 0.6
Basic Augmentation (X15) 92.8± 0.7 85.8± 3.4 86.6± 0.8 80.0± 0.5

VAE - 200∗ 88.5± 0.9 84.0± 2.0 81.7± 3.0 78.6± 0.4
VAE - 2k∗ 92.2± 1.6 88.0± 2.2 86.0± 0.2 79.3± 1.1
Ours-200 91.0± 1.0 84.1± 2.0 85.1± 1.1 77.0± 0.8
Ours-500 92.3± 1.1 87.7± 0.9 85.1± 1.1 78.5± 0.9
Ours-1k 93.2± 0.8 89.7 ± 0.8 87.0± 1.0 80.2 ± 0.8
Ours-2k 94.3 ± 0.8 89.1± 1.9 87.6 ± 0.8 78.1± 1.8

* Using a standard normal prior to generate

Classic DA is data set dependent

Vanilla VAE performs as well as classic DA
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Robustness Across Data Sets

Table: Classification results on reduced data sets (∼ 50 samples per class) on synthetic
samples only

MNIST
MNIST EMNIST

FASHION
(unbal.) (unbal.)

Baseline 89.9± 0.6 81.5± 0.7 82.6± 1.4 76.0± 1.5
Synthetic Only

VAE - 200∗ 69.9± 1.5 64.6± 1.8 65.7± 2.6 73.9± 3.0
VAE - 2k∗ 86.5± 2.2 79.6± 3.8 78.8± 3.0 76.7± 1.6
Ours-200 87.2± 1.1 79.5± 1.6 77.0± 1.6 77.0± 0.8
Ours-500 89.1± 1.3 80.4± 2.1 80.2± 2.0 78.5± 0.8
Ours-1k 90.1± 1.4 86.2± 1.8 82.6± 1.3 79.3± 0.6
Ours-2k 92.6± 1.1 87.5± 1.3 86.0± 1.0 78.3± 0.9

* Using a standard normal prior to generate

The proposed model seems to create diverse samples relevant to the classifier
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Robustness Across Classifiers

(a) reduced MNIST balanced
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

A Note on the Method Scalability
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Figure: Benchmark classifier accuracy according to the number of samples in the training
set on MNIST.
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Toward a Geometry-Aware VAE Sensitivities and robustness on toy data

Data Augmentation

1. Framework

2. Toy Data

3. Medical Imaging
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Results on Neuroimaging data

Datasets and classification task

Classification task: Alzheimer’s disease patients (AD) vs Cognitively Normal
participants (CN) using T1-weighted MR images.

Table: Summary of participant demographics, mini-mental state examination (MMSE)
and global clinical dementia rating (CDR) scores at baseline.

Data set Label Obs. Age Sex M/F MMSE CDR

ADNI
CN 403 73.3± 6.0 185/218 29.1± 1.1 0: 403
AD 362 74.9± 7.9 202/160 23.1± 2.1 0.5: 169, 1: 192, 2: 1

AIBL
CN 429 73.0± 6.2 183/246 28.8± 1.2 0: 406, 0.5: 22, 1: 1
AD 76 74.4± 8.0 33/43 20.6± 5.5 0.5: 31, 1: 36, 2: 7, 3: 2

103 / 126



Results on Neuroimaging data

MRI preprocessing

Bias field correction (N4ITK) + linear registration (ANTS) + cropping

Figure: Preprocessed MRI used in the study

Find wonderful data at:
/network/lustre/dtlake01/aramis/datasets/adni/caps/caps_v2021
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Results on Neuroimaging data

Synthesized images

Figure: Example of two true patients compared to two generated by our method. Can
you find the intruders ? 105 / 126



Results on Neuroimaging data

Synthesized images

Figure: Example of two true patients compared to two generated by our method. Can
you find the intruders ?

106 / 126



Results on Neuroimaging data

Evaluation procedure
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Results on Neuroimaging data

CNN architectures for classifier

Baseline architectures provided by a previous study [WTSDM+20]
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Results on Neuroimaging data

CNN architectures for classifier

Optimized architectures opitmize with random search procedure for this training
set (ClinicaDL)
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Results on Neuroimaging data

Experiments

Four series of experiments:

baseline architecture on train-50

baseline architecture on train-full

optimized architecture on train-50

optimized architecture on train-full

For each experiment 20 CNNs are run and the performance is the mean value of
the 20 performance values.
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Results on Neuroimaging data

Results on train-50 with baseline CNN

Table: Mean test performance of each series of 20 runs trained with the baseline
hyperparameters on train-50 set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 66.3± 2.4 67.2± 4.1
real (high-resolution) 67.9± 2.3 66.5± 3.0

500 synthetic + real 69.4± 1.6 68.5± 2.5
1000 synthetic + real 70.5± 2.1 70.6± 3.1
2000 synthetic + real 71.2± 1.6 72.8± 2.2
3000 synthetic + real 72.6± 1.6 73.6± 3.0
5000 synthetic + real 74.1 ± 2.2 76.1± 3.6

10000 synthetic + real 74.0± 2.7 74.9± 3.2

Increase of balanced accuracy of 6.2 points on ADNI and 8.9 points on AIBL
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Results on Neuroimaging data

Results on train-full with baseline CNN

Table: Mean test performance of each series of 20 runs trained with the baseline
hyperparameters on train-full set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 77.7± 2.5 78.4± 2.4
real (high-resolution) 80.6± 1.1 80.4± 2.6

500 synthetic + real 82.2± 2.4 82.9± 2.5
1000 synthetic + real 84.4± 1.8 83.7± 2.3
2000 synthetic + real 85.9± 1.6 83.8± 2.2
3000 synthetic + real 85.8± 1.7 84.4± 1.8
5000 synthetic + real 85.7± 2.1 84.2± 2.2

10000 synthetic + real 86.3± 1.8 85.1± 1.9

Increase of balanced accuracy of 5.7 points on ADNI and 4.7 on AIBL
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Results on Neuroimaging data

Results on train-50 with optimized CNN

Table: Mean test performance of each series of 20 runs trained with the optimized
hyperparameters on train-50 set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 75.5± 2.7 75.6± 4.1
real (high-resolution) 72.1± 3.1 71.2± 5.1

500 synthetic + real 75.6± 2.5 76.0± 4.2
1000 synthetic + real 77.8± 2.3 80.9± 3.2
2000 synthetic + real 76.9± 2.4 80.0± 3.6
3000 synthetic + real 77.8± 1.9 81.2± 3.7
5000 synthetic + real 76.9± 2.5 80.9± 2.7

10000 synthetic + real 78.0±2.1 81.9±2.2

Increase of balanced accuracy of 2.5 points on ADNI and 6.3 points on AIBL
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Results on Neuroimaging data

Results on train-full with optimized CNN

Table: Mean test performance of each series of 20 runs trained with the optimized
hyperparameters on train-full set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 85.5± 2.4 81.9± 3.2
real (high-resolution) 85.7± 2.5 84.4± 1.7

500 synthetic + real 86.0± 1.8 83.2± 2.4
1000 synthetic + real 86.5± 1.9 83.7± 2.0
2000 synthetic + real 87.2±1.7 84.0± 2.0
3000 synthetic + real 85.8± 2.6 83.6± 3.2
5000 synthetic + real 86.4± 1.3 83.5± 2.2

10000 synthetic + real 86.7± 1.8 84.3±1.8

Increase of balanced accuracy of 1.5 point on ADNI and -0.1 point on AIBL

114 / 126



Results on Neuroimaging data

Conclusion

We have proposed

a new geometry aware VAE-based data augmentation framework relevant for
representing and classifying data in the HDLSS setting.

Validated on classification tasks on toy and real-life data sets in particular in
the High dimension low sample size setting.
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Results on Neuroimaging data

Conclusion

We have proposed

a new geometry aware VAE-based data augmentation framework relevant for
representing and classifying data in the HDLSS setting.

Validated on classification tasks on toy and real-life data sets in particular in
the High dimension low sample size setting.

Strengths:

Independent on the nature of the data set: from 2D images (MNIST,
EMNIST, FASHION) to 3D medical images (ADNI and AIBL),

Relevant synthetic data: classifiers achieved a similar or better classification
performance when trained only on synthetic data than on the real train set.

Classifier independence: MLP, random forest, k-NN and SVM (on toy data
sets) ; baseline and optimized parameters (on medical images).
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Results on Neuroimaging data

Conclusion

We have proposed

a new geometry aware VAE-based data augmentation framework relevant for
representing and classifying data in the HDLSS setting.

Validated on classification tasks on toy and real-life data sets in particular in
the High dimension low sample size setting.

Limitations - what could be improved:

No extensive search on VAE architecture.

Would it benefit from the use of longitudinal data?

train-50 is still large compared to some medical data sets. . .
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Implementation available
https://clementchadebec.github.io/projects/

AND Extensive comparison of data generation based on VAEs
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Thank you!

https://clementchadebec.github.io/projects/

Contacts:

clement.chadebec@inria.fr
stephanie.allassonniere@inria.fr
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Clustering

True labels
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Figure: Euclidean and Riemannian k-medoids custering.
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Figure: Distance maps.
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Results - Clustering

Data set Model Subset 1 Subset 2 Subset 3 Mean

Synthetic data
linear 53.88 62.52 71.63 62.68

geodesic 71.41 81.39 79.49 77.43

MNIST 1
linear 89.73 93.11 91.80 91.55

geodesic 91.68 94.51 95.63 93.94

MNIST 2
linear 68.24 69.22 79.05 71.17

geodesic 70.35 71.34 79.64 73.78

MNIST 3
linear 75.55 75.76 81.70 77.67

geodesic 76.08 77.94 81.96 78.66

FashionMNIST 1
linear 90.47 91.63 86.78 89.63

geodesic 91.44 92.55 87.46 90.48

FashionMNIST 2
linear 92.20 91.26 93.30 92.25

geodesic 93.56 91.80 94.12 93.16

FashionMNIST 3
linear 72.46 79.58 83.16 78.40

geodesic 74.89 81.88 84.83 80.53

Table: F1-Scores.
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