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1. Introduction
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Cell biology revolution

® The cell has been discovered in the 17th
century

® Cells are the basic unit of structure and
function in living organisms

® Physiology emerges as the meta-cellular
science (interaction between cells)
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Main Biological Context

® Decypher cell diversity among living
tissues

® Impossible before ~2010 due to
technical limitations

® Single Cell genomics: measure
genomic features (DNA variations,
RNA, Epigenome) at the single cell
resolution
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From the Human Cell Atlas [6]
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A timeline: technologies
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A timeline: produced data
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Cell biology goes genome-wide
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The human cell Atlas project

® comprehensive reference catalog of all
human cells

® use stable properties, transient features,
locations and abundances.

® describe each human cell by a defined set
of molecular markers

® based on DNA variations, RNA,
Epigenome at the single-cell resolution

There are

37 trillion cells

in the human body

The Human Cell Atlas will create a ‘Google map’
of the human body. This is a global effort.
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Single-Cell from a statistician’s perspective
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High-dimensional count data

xjj = expression of gene j in cell i

Xnxp = Xjj : cells

genes

® High dimension: n grows but < p & Big Data: n and p grow

e Count data with dropouts
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Machine Learning Challenges for Single-Cell data
analysis

® Dimension Reduction / Visualization

Clustering cell-type discovery (non supervised and semi supervised)

Datasets alignments for non-matched samples

Catch cells-ecosystems behaviors

Simulation of fake data

Data integration

Statistical Testing ( compare gene expressions )
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Outline

2. Linear Dimension Reduction methods for sc data
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Matrix factorization: X ~ UV’
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— Low-rank representation of X
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Matrix factorization: X ~ UV’
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Data visualization:
scatter plot (uj1, Ui2)i=1:
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Approximation X ~ UV'?

Sense of the approximation ? 1+ .. . ;. .

uv’
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Approximation X ~ UV'?

Sense of the approximation 7+ . . ;. »

uv’

X U

Principal Component Analysis:

® Find a linear projection of X with maximum variance

® SVD algorithm: argmin HX — UVTHf_
UcR"<K VeRP*K

® |east squares approximation
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RNA-seq data = Counts

Relation between geometry and underlying model
| - |l <> Gaussian distribution

e First idea: Xjj ~ P(\)

® Highly expressed genes
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Figure: P(200) empirical distribution
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RNA-seq data = Counts

Relation between geometry and underlying model
| - |l <> Gaussian distribution

e First idea: Xjj ~ P(\)
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® Highly expressed genes
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Figure: P(2) empirical distribution
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Need for a probabilistic PCA

® Over-dispersion in RNA-seq data — Var(Xj;) > E[X]
Single-cell data: zero-inflation — P(X;; = 0) > e~

Embed PCA with a probabilistic model

Xijj ~ probability distribution in the exponential family
Factorization of E[X] rather than X

Replace || - |2 approximation by likelihood-based approaches
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Generalized PCA[2] and Poisson NMF [4]

® Xji ~ P(\jj) with the Poisson rate matrix A = [Ajj]nxp

® Decompose E[X] = A such that Ajj = >, U Vj;

Bregman divergence
(Likelihood)

X ~ 2(N) u

1

A=UVT
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Random Intensity Models

® First Strategy : Poisson-Gamma Models :

A~T(a,8), X|A~P(N), X~NB

Second Strategy : Poisson Log-Normal Models:

A~ N(0,%), X|A~P(exph)

Challenge : compute the posterior intensity:

E(A | X)

Estimate the factors as U = E[U | X] and V = E[V | X]

® Variational inference: approximation of the posteriors
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Outline

3. Non-Linear Dimension Reduction and Graph Coupling
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Beyond Linear projections

® Linear methods are powerful for planar structures

High dimensional datasets are characterized by multiscale properties (local / global
structures)

May not be the most powerful for manifolds

Non Linear projection methods aim at preserving local characteristics of distances
A B c
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Stochastic Neighbor Embedding [8]

® (Xi,...,X,) are the points in the high-dimensional space R”,

e Consider a similarity between points:

exp(—||X; — X;||*/207)
Zeyf;eXP(—HXE — Xi|?/207)

® Hyper-parameter o; locally smooths the data, to be tuned

Pij =
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tSNE and Student / Cauchy kernels

e Consider (Z1,...,Z,) are points in the low-dimensional space R?

e Consider a similarity between points in the new representation:

o — P12 = Z1P)
V=S exn(=11Z - Z]?)

¢ Robustify this kernel by using Student(1) kernels (ie Cauchy)

o AHIZi= 2
VS A+ 1z -zl
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KL optimization by Gradient descent

® The Kullback-Leibler divergence can be used as a measure of dissimilarity between
distributions:

KL(p,q)z/ p(x) log qE ;dx

® Minimize the KL between p and q to find Z € R? such that:

= KL(pj, q5)
-

%52 - St -2~ 2

® Gradient descent with momentum to speed up and improve convergence

® Random initialization
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tSNE does not account for between-cluster distance
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Catching Complex Geometries
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Properties of t-SNE

® Good at preserving local distances (intra-cluster variance)
® Not so good for global representation (inter-cluster variance)

® Good at creating clusters of points that are close, but bad at positioning clusters wrt
each other

® Does not handle well high dimensional data (preliminary PCA and feature selection)
e Sensistive to the calibration of the hyperparameter (smoothing)

® Reproducibility of results due to stochastic optimization
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tSNE on single cell Gene Expression data [3]

a N=25000 b N=1306127
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Influence of parameter tuning
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Comparisons

The field is very active and comparisons are performed extensively
® Tuning is a challenge [5] especially for non-linear methods
® | inear methods are robust !

® How to compare dimension reduction methods 7

Confusion between dimension reduction and clustering ?
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Research Challenges

— What are the statistical / probabilistic foundations of Stochastic Neighbor Embedding ?

— Can we define a common statistical framework for seemingly unrelated dimension
reduction methods ?

— How to combine non-linear dimension reduction and clustering 7
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