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Cell biology revolution

• The cell has been discovered in the 17th
century

• Cells are the basic unit of structure and
function in living organisms

• Physiology emerges as the meta-cellular
science (interaction between cells)
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Main Biological Context

• Decypher cell diversity among living
tissues

• Impossible before ∼2010 due to
technical limitations

• Single Cell genomics: measure
genomic features (DNA variations,
RNA, Epigenome) at the single cell
resolution

From the Human Cell Atlas [6]
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A timeline: technologies

[9]
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A timeline: produced data

[6]
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Cell biology goes genome-wide

• Classify cells into distinct cell types

• Shape, location, interactions, function

• Recent technological breakthroughs allow
the molecular characterization of cells

[1]
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The human cell Atlas project

• comprehensive reference catalog of all
human cells

• use stable properties, transient features,
locations and abundances.

• describe each human cell by a defined set
of molecular markers

• based on DNA variations, RNA,
Epigenome at the single-cell resolution
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Single-Cell from a statistician’s perspective

From 10X Genomics
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High-dimensional count data

xij = expression of gene j in cell i

Xn×p =

 xij


1 . . . . . . . . . . . . p︸ ︷︷ ︸

genes

1
...

n

 cells

• High dimension: n grows but ≪ p & Big Data: n and p grow

• Count data with dropouts
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Machine Learning Challenges for Single-Cell data
analysis

• Dimension Reduction / Visualization

• Clustering cell-type discovery (non supervised and semi supervised)

• Datasets alignments for non-matched samples

• Catch cells-ecosystems behaviors

• Simulation of fake data

• Data integration

• Statistical Testing ( compare gene expressions )
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Matrix factorization: X ≈ UVT

Cells: U ∈ Rn×K

Genes: V ∈ Rp×K

}
Low dimensional representation

→ Low-rank representation of X
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Matrix factorization: X ≈ UVT

Data visualization:
scatter plot (ui1, ui2)i=1:n
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Approximation X ≈ UVT?
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Approximation X ≈ UVT?

Principal Component Analysis:

• Find a linear projection of X with maximum variance

• SVD algorithm: argmin
U∈Rn×K ,V∈Rp×K

∥∥X−UVT
∥∥ 2

F

• Least squares approximation
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RNA-seq data = Counts

Relation between geometry and underlying model
∥ · ∥2 ↔ Gaussian distribution

• First idea: Xij ∼ P(λ)

• Highly expressed genes

↪→ large λ

↪→ Gaussian approximation
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Figure: P(200) empirical distribution
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RNA-seq data = Counts

Relation between geometry and underlying model
∥ · ∥2 ↔ Gaussian distribution

• First idea: Xij ∼ P(λ)

• Highly expressed genes
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Need for a probabilistic PCA

• Over-dispersion in RNA-seq data → Var(Xij) > E[Xij ]

• Single-cell data: zero-inflation → P(Xij = 0) > e−λ

Embed PCA with a probabilistic model

• Xij ∼ probability distribution in the exponential family

• Factorization of E[X] rather than X

• Replace ∥ · ∥2 approximation by likelihood-based approaches
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Generalized PCA[2] and Poisson NMF [4]

• Xij ∼ P(λij) with the Poisson rate matrix Λ = [λij ]n×p

• Decompose E[X] = Λ such that λij =
∑

k UikVkj
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Random Intensity Models

• First Strategy : Poisson-Gamma Models :

Λ ∼ Γ(α, β), X | Λ ∼ P(Λ), X ∼ NB

• Second Strategy : Poisson Log-Normal Models:

Λ ∼ N (0,Σ), X | Λ ∼ P(expΛ)

• Challenge : compute the posterior intensity:

E(Λ | X)

• Estimate the factors as Û = E[U |X] and V̂ = E[V |X]
• Variational inference: approximation of the posteriors
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Beyond Linear projections

• Linear methods are powerful for planar structures

• High dimensional datasets are characterized by multiscale properties (local / global
structures)

• May not be the most powerful for manifolds

• Non Linear projection methods aim at preserving local characteristics of distances
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Stochastic Neighbor Embedding [8]

• (X1, . . . ,Xn) are the points in the high-dimensional space Rp,

• Consider a similarity between points:

pi |j =
exp(−∥Xi − Xj∥2/2σ2

i )∑
ℓ̸=i exp(−∥Xℓ − Xj∥2/2σ2

ℓ )

• Hyper-parameter σi locally smooths the data, to be tuned
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tSNE and Student / Cauchy kernels

• Consider (Z1, . . . ,Zn) are points in the low-dimensional space R2

• Consider a similarity between points in the new representation:

qi |j =
exp(−∥Zi − Zj∥2)∑
ℓ̸=i exp(−∥Zℓ − Zj∥2)

• Robustify this kernel by using Student(1) kernels (ie Cauchy)

qi |j =
(1 + ∥Zi − Zj∥2)−1∑
ℓ̸=i (1 + ∥Zi − Zℓ∥2)−1
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KL optimization by Gradient descent

• The Kullback-Leibler divergence can be used as a measure of dissimilarity between
distributions:

KL(p, q) =

∫
p(x) log

p(x)

q(x)
dx

• Minimize the KL between p and q to find Z ∈ R2 such that:

C (Z ) =
∑
ij

KL(pij , qij)

[
∂C (Z )

∂Z

]
i

=
∑
j

(pij − qij)(Zi − Zj)

• Gradient descent with momentum to speed up and improve convergence

• Random initialization
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tSNE does not account for between-cluster distance
50 points

200 points

What about random noise ?
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Catching Complex Geometries
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Properties of t-SNE

• Good at preserving local distances (intra-cluster variance)

• Not so good for global representation (inter-cluster variance)

• Good at creating clusters of points that are close, but bad at positioning clusters wrt
each other

• Does not handle well high dimensional data (preliminary PCA and feature selection)

• Sensistive to the calibration of the hyperparameter (smoothing)

• Reproducibility of results due to stochastic optimization
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tSNE on single cell Gene Expression data [3]
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Influence of parameter tuning
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Comparisons

• The field is very active and comparisons are performed extensively

• Tuning is a challenge [5] especially for non-linear methods

• Linear methods are robust !

• How to compare dimension reduction methods ?

• Confusion between dimension reduction and clustering ?
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Research Challenges

→ What are the statistical / probabilistic foundations of Stochastic Neighbor Embedding ?

→ Can we define a common statistical framework for seemingly unrelated dimension
reduction methods ?

→ How to combine non-linear dimension reduction and clustering ?
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