Integration and analysis of heterogeneous biological data
through multilayer graph exploitation to gain deeper insights
into feed efficiency variations in growing pigs

Camille Juigné

Composition du Jury :
Président : Mathieu EMILY, Professeur, Institut Agro Rennes-Angers
Examinateur : Michel DUMONTIER, Distinguished Professor, Maastricht University
Rapportrice et rapporteur : Andrea RAU, Directrice de recherche, INRAE
Fabien JOURDAN, Directeur de recherche, INRAE
Dir. de thése : Florence GONDRET, Directrice de recherche, INRAE
Co-dir. de théses Emmanuelle BECKER, Professeure, Université de Rennes

' MR PEGASE £ . e 3
agro=-- INRAE e JlelSA&mm,.



Thesis general problem: Understand a complex phenotype

through heterogeneous biological data

® To enhance our understanding of the complex biological phenomenon
use case: feed efficiency

® |ntegration of heterogeneous data = linking data about various types of entities

® Through a computational method = Semantic Web and multilayer graphs
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Use case: Feed efficiency in growing pigs

Feed efficiency
® The ability of pigs to turn feed nutriments into lean growth rate
— while maintaining physiological functions and health
— by reducing effluent discharge

Why is this biological question important?
® Feed represents between 60 and 70 % of the total cost of pork production
® Pig production is facing several issues related to competition with feed resources,
and competitiveness due to global trade
® The increase in size of pig farm led to environmental issues related to storage,
treatment and use of effluents
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The need to get deeper insights into feed efficiency variations in growing pigs

" Feed efficiency

® A research priority to support sustainable meat production

® But a complex trait that integrates multiple biological pathways orchestrated in and
by various tissues

Primary avenues for exploration

® _omics technologies: produce large amount of data without a priori

® blood samples: minimally invasive way to summarize the activities of various tissues
within the body
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Experimental biology for a better understanding of life

® Describing and understanding the biological mechanisms
® |nvestigate the different biological entities
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Experimental biology for a better understanding of life

® Describing and understanding the biological mechanisms

® Investigate the different biological entities
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Transcriptomics

Methods:
.
® Micro-arrays

TRANSCRIPTION § o RNA-seq
I

localization-dependent Data type:
® Gene expression level,

transcript abundance
(quantitative)

J Adenin
[ Thymin

4 uracil

Analyses:
® Differential gene expression
® Functional enrichment

® Gene co-expression network
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Metabolomics
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Methods:
® Nuclear Magnetic Resonance

® Liquid Chromatography - Mass
Spectrometry
Data types:

® Types and concentrations of
metabolites (quantitative)

® Presence/absence (binary)
Analyses:

® Groups differentiation

® Biomarkers identification

® Assessing changes in the

metabolic profile
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From single -omics to multi -omics analysis

® High-throughput techniques generate a large quantity of data
® Each modality is analyzed statistically, independently from the others

The modalities are not independent

Conventional . . .
molecular biology Single omics Trans-omics Genom_e Measurement
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Trends in Biotechnology
Fig. Linking the different levels of biological organization allows for a holistic view of biological entities (source: K. Yuri et al.)

Considering different levels of -omics as a whole will help to understand biological

systems, especially by considering the cascade of events and the interactions between
entities
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Inherent heterogeneities in biological data

: : Het ity of dat
Heterogeneity of entity ty(;:rogenel y or data Technical heterogeneity

type . variations in measurement
distinct biological entities: in terms of the nature of techni i tal
& ' the data itself: textual, echniques, experimenta
genes, transcripts, . o protocols, and data
. binary, quantitative or
proteins, etc. o formats
qualitative

While it makes logical sense to consider biological data as a whole with interconnected
elements, the process of integrating these data is far from trivial
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Strategy: A comprehensive and systemic integration approach

Strategy adopted: systemic network-based integration

® Relationships between entities are preserved, allowing a holistic view

® Graphical representation facilitates understanding of relationships between data

® Adaptability to changes and addition of new data sources

Multilayer Networks

Non-interconnected Interconnected
Edge-Colored Muliiplex Interdependent General
Multigraph Interconnected Interconnected

Manlio De Domenico, " Multilayer Networks lllustrated” (2020)
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-Omic levels can be linked to each other by interactions

Biological pathway

" a series of actions among molecules in a
cell that leads to a certain product or a
change in the cell’ (NIH)
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-Omic levels can be linked to each other by interactions

Biological pathway

" a series of actions among molecules in a
cell that leads to a certain product or a
change in the cell’ (NIH)
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Complexes and interactions in biology

® Chemical assembly of several molecules

® (Can either participate in or control
interactions
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Strategy: A Semantic Web based approach

Semantic Web : key principles

Representation of knowledge that can be
understood by both humans and machines
(semantic = meaning)

1. RDF format: simple way to represent
knowledge (subject, predicate, object)

2. OWL ontologies: standardized
vocabulary specific to a field

3. SPARQL: language for reasoning on
data
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Biological Pathway Exchange format (BioPAX)

- Protein properties
Entity availability (String”)

name (String*)

Database of biological

-comment (String®)

. . [ xref (Xref*) |

pathways in BioPAX ""“"” P@. 053 (Provenance’)
evidence (Evidence®)

® Well established ' ‘

feature (Entity-Feature®)
ontology to represent

not Feature (Entity-Feature*)
member Physical Entity (Protein®)
pathways at molecular

cellular Location
(Cellular-Location-Vocabulary*)

and cellular levels enity Reference (Protein-F

® Reactome, KEGG, ( TemplateReaction }[cmm][ [¢ i _][ action J‘[ i ]
PathwayCommons... A $ v&\]{

e Can be mapped with [CamrysisJ [Modu\alion] [Bis"e:;'gﬁa'} [TranSpOrl f;“;ﬂﬁ;]

other resources such
as ChEBI, UniProt,
GO...

[ TemplateReactionRegulation ] [ TransportWithBiochemicalReaction ] [Degmdaliun]

Demir et al. (2010)
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BioPAX: Example Ca?t + ANO2 — ANO2: Ca**
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BioPAX: Example Ca?t + ANO2 — ANO2: Ca**

\"ANO2 dimer binds:

CellularLocation
Vocabulary2

bp3:stoichiometryCoefficient

bp3:cellularLocation Stoichiometry142>
| r—-pr:physicalEnti
SmallMolecule69 €—————___bp3:left

bp3:physicalEntity ~bp3:component bp3:left

Complex72

<

'bp3:componentStoichiometry:

bp3_diBplEyName_.._bpS:cellularLocation bp3:physicalEnti

CellularLocation
Vocabulary1

The complexity of BioPAX reflects the complexity of biological reality
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Thesis objective

Better define key drivers of the phenotypic divergence in feed efficiency by
® considering the different levels of organization between biological entities

® integrating experimental data and knowledge bases
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Overview

1. Introduction

2. Contrib 1: Semantically rich queries for exhaustively connecting different
-omics

3. Contrib 2: Detect and fix non compliance with BioPAX specifications related to
complexes

4. Contrib 3: A graph-based approach to identify complex connections in heterogeneous
biological networks

5. Use-case: Application to feed efficiency data

6. Conclusion
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Contrib 1: Semantically rich queries for exhaustively

connecting different -omics

lbp3:Comple: bp3:Interacti lbp3:SmallMolecule|

.
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component ., myonent
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_ P [bp3:SmallMoleculeReference .
bo3:Protein entityReference . -
- N - entityReference
N ' e
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-

pan}cipant
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entityReference .
lbp3:ProteinReference] ¢ ~ - - A
Reactome/ ’ enityReference = lbp3:Interaction| 3
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id id

bp:
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Retrieving Proteins in the Reactome database

Federated SPARQL query

- _— 1. from a list of HGNC IDs,

eAlso
~

g e QINQSO v, /db"g......... = identify the correspondin
Prot ¢ e Unificationrefa UniPrgt IDs (UniProt ¢
\ SPARQL endpoint)
. 'l 2. from a list of UniProt IDs,
@inReference —type entityRefrence—{ Proteints | locate the corresponding
A s - ProteinReferences
e"“‘VRTfe"W \/,/7\\\ 3. from these
rreoctome VoY ‘\\P“"e‘"z/f‘ ProteinReferences,
‘(""e‘“};‘ T identify all the associated
T Proteins
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Retrieving Proteins in the Reactome database

ment—{IIRUSS FseeAlso
| ~ H .
ovog detabase QoNaso v, = Results in Reactome
[ d > < .
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Most Reactome proteins involved in reactions have a UniProt ID
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Retrieving SmallMolecules in

the Reactome database

Federated SPARQL query

identify the target molecules in
the ChEBI ontology (ChEBI
SPARQL endpoint)

2. from a list of ChEBI IDs,
locate the corresponding

rreoctome

N\
mall all -
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‘ smal )\ [ sman |
Molecule7 | - Molecule981
___\ N )
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Smal Small
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(
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SmallMoleculeReferences,
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Retrieving SmallMolecules in the Reactome database

rreoctome
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A significant number of Reactome metabolites are not identifiable in ChEBI
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Contrib 1: Semantically rich queries for exhaustively
connecting different -omics
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Contrib 1: Outcomes and conclusions

A method and its implementation

® to integrate simultaneously metabolomic, proteomic and transcriptomic data
® to extract subgraphs of interest from BioPAX databases...
e ... enriched with knowledge bases (UniProt, ChEBI)

It underlines the importance

® of developing and using tools with such semantic richness

® to step up the efforts to link the different ontologies and databases
(systematically using universal identifiers)

26 /55



Overview

1. Introduction
2. Contrib 1: Semantically rich queries for exhaustively connecting different -omics

3. Contrib 2: Detect and fix non compliance with BioPAX specifications related
to complexes

4. Contrib 3: A graph-based approach to identify complex connections in heterogeneous
biological networks

5. Use-case: Application to feed efficiency data

6. Conclusion
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Contrib 2: Detect and fix non compliance with BioPAX

specifications related to complexes

(!) A complex cannot be composed of other complexes (!)
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Contrib 2: Detect and fix non compliance with BioPAX

specifications related to complexes

(!) A complex cannot be composed of other complexes (!)

Ca>t + ANO2 — ANO2: Ca*t

CellularLocation,  r-------------, \"ANO2 dimer binds:
Vocabulary2 DR " "xsd:float | L____Ca+"
T bp3:stoichiometryCoefficient bo3udi ? N :_
bp3:cellularLocation Stoichiometry 14> p3:displayl ame
| y——bP3:physicalEntit
bp3:participantStoichiometry
SmallMolecule69 €————_bp3left

bp3:physicalEntity ~ bp3:component

———bp3:cellularLocation bp3:physicalEntity=—CStoichiometry147>

bp3:displayName’

CellularLocation
Vocabulary1 !

bp3:stoichiometryCoefficient bp3:componentStoichiometry
bp3:componen
bp3:physicalEntity- Stoichiometry14&>
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Contrib 2: Identify complexes composed of other complexes

A complex cannot be composed of other complexes

The components of a complex cannot have a component

i
! Complexes '
' 1
1 At least one component No component (black-box '
! complex) '
,
; :
1 Black-box
: Complex

Componenti

30/55



Contrib 2: Identify complexes composed of other complexes

Complexes

At least one component No component (black-box
complex)

'
'

'

'

'

'

'

'

'

Black-box H
Complex 1
'

'

'

'

'

'

'

'

'

'

Component n

Component i

¢

L
Component i

Component n
Not a complex |_Not a complex J

Component 1
Not a complex
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Contrib 2: Identify complexes composed of other complexes

Complexes

1
'
'
No component (black-box !
complex) '
'
'
'

Black-box
Complex

At least one component that is a complex...

h A b

H ' H

H ' H
H ' | H
H ' H n . H
' : o allits that are are at least one component that is a complex that .
H : A H
| . ' \ black-box complexes is not a black-box complex (recursively H
; omplex : : defined) :
1 H H H
' H Complex '
H ' H
1 Componeni 1) Componenti ~(~Componentn H H
H Nota complex J  Nota complex |_Nota complex ' H
H ' H
H ' H H
' '
________________________________ | Complex H
X

We observed some invalid complexes in Reactome (not detected by the BioPAX vaIidator)w55



Contrib 2: Identify and quantify invalid complexes

Complexes represent a large fraction of biological entities
Invalid complexes are present in large quantities in the data sets of different organisms

'(reoctome

Use case (v79)

Homo sapiens: 39% complexes are invalid out of 14,840
Mus musculus: 39% complexes are invalid out of 10,761
Sus scrofa: 40% complexes are invalid out of 7,769

Invalid complexes composition reaches up to 10 levels in the tree of components
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Contrib 2: Fix the invalid complexes

How it is How it should be

Component Z I
C 1 C 2 C 3 C 2
¢ ! ¢ ’ ¢ ’ x J

Collapse as direct components all the (in)direct components that do not have component
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Contrib 2: Fix the invalid complexes

How it is How it should be

a B
*,
- >

P
5(2) ="y _5,(2)+5(p)

p € parent nodes

Stoichiometry has to accomodate the fact that components can occur at several places
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Contrib 2: Homo sapiens Reactome use-case (repair)

All invalid complexes were fixed

before fixing
]

Number of complexes

after fixing
|

T T T T
0 50 100 150

Number of direct components of the complexes

Fixing invalid complexes increases the number of direct components
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Impact on the graph topology
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Number of molecules that are not complexs and participate in the interaction at a distance of 1 or 2

Taking into account invalid complexes has a strong impact on the interaction graph
topology
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Side effect: detection of artificial redundancy (Homo Sapiens)

[AJ[C ) (=]
<~

C~ Je J(Ce ]

Fixing invalid complexes allowed to identify 333 redundant complexes (+38%)
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Contrib 2: Outcomes and conclusions

Semantically-rich queries for

¢ identifying and fixing invalid complexes that are reproducible on other databases

Conclusions

® |Improves the conformity and the analysis of the graph by repairing the topology

e Will allow to apply reasoning methods on better quality data

e Side effect of allowing the detection of complex redundancies

B Fixing molecular complexes in BioPAX standards to enrich interactions and detect redundancies using
semantic web technologies. Camille Juigné, Olivier Dameron, Francois Moreews, Florence Gondret,
Emmanuelle Becker. Bioinformatics, 2023.
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Contrib 3: A graph-based approach to identify complex
connections in heterogeneous biological networks
bp3:Complex] [bp3:Interaction] lbp3:SmaliMolecule]
component N ,1
component P p3:SmallMoleculeReferenc ’
tyRefo *m e"myREfere"ce ? entityRefgrence
onti Y sference) [bp3:SmallMoleculd \ ’
.7 enntyReference partlcnpant participant. - "
p3:ProteinReference] A? - =0 entityReference,
Reactome/ A entityReference lbp3:Interaction] "‘
Interactlons be3iProtenReteroncel _'d
[
1
1
UniProt/ ? ® o
Proteins| 1

id !
v
\
A
\
\
1 coexpressed

bp3:SmallMoIecuIeReferenc§
'
'
N '
.
\ id
)
1.
isoforms
FO
® ..
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From BioPAX (RDF graph) to Neo4J (Labelled Property

Graph) using NeoSemantics

RDF - SPARLQ LPG/Neo4J - Cypher

® data integration ® more complex analysis based
® symbolic reasoning on graph topology
~
- i gpzfj'"'r???g""?‘: : UnificationXref
- " . “UnificationXref SmallMolecule69 AR AFES

displayName: Ca2+

bpS:displ\ayName
SmallMolecule69

bp3:left

b
bp3:xref bp3:xref

bp3:conversionDirection

BiochemicalReaction8
displayName : "ANO2 dimer binds Ca2+"
‘conversionDirection: "LEFT-TO-RIGHT"

bp3:left
bp3:right=»>Complex73
|

bp3:left

Complex72€« bp3:displayName

bp3:right
bp3:left

bp3:displayName Complex72 4

Complex73

. I - i) displayName: ANO2 dimer
i3 {"ANO2 dimer binds displayName: ANOZ:Ca2+
Q ! V.o Cazrl ____:
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Contrib 3: Graph traversal

Comparing co-expression and ;_W,
random modules . P 4

ntityRoforence paﬂl ipant_ partii p nt..

® |ength shortest paths r— T -
. . s nteractions 4— 7 id
connecting participants R . ‘
® number of shortest paths ? ’x\ 2 .
connecting participants e S oot

® types of nodes that are

length = 13 ; nb of interactions = 2 ; nb of small molecules = 2
traversed by the shortest path

We designed a graph traversal to perform these analyses using a Cypher query based on
the BioPAX data schema
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Contrib 3: Path filter for graph traversal

bp3:Protein > €—p 1. 3 cataSoun
o bp3:left—,

< bp3:Provenance >-

p3:dataSou
dataSourc p3dataSourc

bp3:BiochemicalReaction p3:|

bp3:right
datiSare o
bp3:Complex bp3:Complex

SN

bp:

& ey

bp3:controller

I p3:rig (T CNTRRr . 03:right3> bp3:Protein
D
Gt
3 dataSource R

bp3:Small
Molecule

bp3:entityReference hPS:entityRiemnce

A 4 daiaSourc
bp3:entityReference T
* (bp:SmaliMolecule™ o f bp3:Protein
Reference ataSo Reference
bp3:right

bp3:entityReference

Gp3:Protein bp3:Protein bp3ixref
@© e ) «€—bp3:controlled—{ T T L A S T bp3:leftd> bp3:Protein v
E

Reactome/
Interactionsi

We selected a subset of edges (properties) to pass through that made biological sense

bp3:UnificationXref
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Contrib 3: Outcomes and onclusions

Cypher queries for

® conducting graph traversal based on the BioPAX data schema

Conclusions

® Combining Semantic Web technologies with Neo4j using the Neosemantics plugin
provides a robust framework for analyzing complex data

® Graph traversal will provide insight into the organization of biological entities of
interest

B A graph-based approach to identify complex connections in heterogeneous biological networks. Camille
Juigné, Océane Carpentier, Florence Gondret, Emmanuelle Becker, Olivier Dameron. To be submitted.
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Use-case: Application to feed efficiency data

metabolites in blood

phenotypic traits
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Use-case: Application to feed efficiency data

metabolites profile metabolites in blood

8 of co-
aaaaa expressed genes

o related to feed

efficiency

phenotypic traits

@

Feed conversion ratio
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efficiency
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Graph traversal results

on the Royalblue module

015

0.10-

0.05- ‘l
ooo- L I |""-;
10 20

Shortest path length

Density

Condition

Module 3 z
. Randomization

N ‘/
9 1

i
Mean length

Royalblue module

Random modules (*)
Average shortest path length 8,5 9,7
P-roportlf)n of patrls with 41.5% 38.3%
biochemical reaction
Proportion of paths with 41.2% 25.0%
small molecule

(*) same number of genes - average for 500 randomizations

The behavior of the Royalblue module significantly deviates from random
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Use-case: Insights on feed efficiency in pigs

® Architecture of the trait: co-expressed and co-regulated gene modules identified
related to feed efficiency

® Patterns with different structures than random in Reactome

Data not shown:

® These modules also regulate lean growth rate

® Among the biological processes over-represented within the modules, several are
linked to immunity (+ cell development and protein localization)
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Use-case: Insights on feed efficiency in pigs

® |nterconnecting these modules with metabolic profiles suggests links between
immunity and fatty acid % concentrations

® One of the regulatory pathways appears to be important: regulatory mechanisms -
proteins G

® Relevant for future nutritional recommendations to obtain good synergy between
production and health

B Small networks of expressed genes in the whole blood and relationships to profiles in circulating
metabolites provide insights in inter-individual variability of feed efficiency in growing pigs. Camille Juigné,
Emmanuelle Becker, Florence Gondret. BMC Genomics, 2023.
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General conclusion

A comprehensive and systemic method for complex phenotypes that are out of reach of
traditional approaches that...

® bridges the gap between transcriptomics and metabolomics

® provides insights on complex phenotypes

® demonstrates that Semantic Web technologies can address the challenges of
multi-omics integration

offers generic, data-independent and reproducible methods and analyzes
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Perspectives and potential future improvement and research

directions

Refining our graph traversal methods:

® avoid traversing through small molecules acting as hubs in the graph (water, H+, ATP,
NAD, etc.)
® traverse the graph using alternative algorithms (e.g. random walk)

Enhancing entity identification

Enrich the existing graph with additional layers

Applying our approach to another experimental dataset or a different biological
question
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