

Artificial Metabolic Networks: Hybrid models enabling neural computations with metabolic networks

Team BioRetroSynth Léon Faure^{1,2}, Bastien Mollet^{2,3}, Wolfram Liebermeister^{1,4}, and Jean-Loup Faulon^{1,2,5'}

¹University of Paris-Saclay, Saclay, France, ²MICALIS Institute, INRAe, Jouy-en-Josas, France, ³ENS Lyon, Lyon, France, ⁴Universite Paris-Saclay, INRAe, MaIAGE, Jouy-en-Josas France, ⁵Manchester Institute of Biotechnology, University of Manchester Manchester, UK *Corresponding author

Introduction

- Flux Balance Analysis (FBA): main approach for studying metabolic networks¹
- Constrained optimization principle: with v_1 constrained, optimize v_3
- How can we surpass uptake flux measurement?

RNN matrix products³

Contact:

leon.faure@inrae.fr

@leonfaurefdv

R

M

Reference

'in silico'

data

 $\text{Loss} = \frac{1}{n_{ref}} \left\| P_{ref} V - V_{ref} \right\|^2 + \frac{1}{m} \|SV\|^2 + \frac{1}{n_{in}} \|ReLU(P_{in}V - V_{in})\|^2 + \frac{1}{n} \|ReLU(-V)\|^2$ Mass-balance Uptake fluxes Flux positivity Reference (Sv=0) bounds Fluxes

Surrogating FBA with neural methods

- Hybrid model: neural layer + mechanistic layer²
- Challenge: mechanistic layer compatible with gradient back-propagation
- Alternative to Simplex solver: Linear and Quadratic programming neural methods
- Custom loss function to assess constraints
- LP needs less iterations than QP
- Both perform FBA with gradient back-propagation compatibility

ANR-21-CE45-0021

agence nationale de la recherche

0

Learning on experimental data with hybrid models

- C_{med} describes medium concentrations
- V^0 accelerates the mechanistic layer
- Error computation: experimental growth rate + network constraints
- Backpropagation to both neural layers

Conclusions

- Successful embedding of metabolic networks in machine learning architectures
- Hybrid modelling augments mechanistic models, saving time and resources
- Opens a new door for exploiting metabolic networks

Centre Île-de-France – Jouy-en-Josas – Antony

- an METAPROGRAMME DIGIT-BIO