

An Introduction to Machine Learning

Liva Ralaivola, Director of Al Research, Criteo Al Lab

@CriteoAlLab, @LivaRalaivola

INRAE Jan. 31st, 2022

Outline

Exordium -- captatio benevolentiae

Al, Machine Learning, Deep Learning

Machine Learning in our everyday life

Core goal in supervised learning: generalization

Pivotal Advances (non Deep things)

Positioning

Warm-up: a first handcrafted classifier

Kernel methods: graceful methods

Adaboost: combining weak learners

Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff)

Perceptron: travelling in time (1958--)

Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models

Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016)

AlphaFold (Jumper et al, Nature 2021)

Conclusion
An Introduction to Machine Learning

Outline

Exordium -- captatio benevolentiae

Al, Machine Learning, Deep Learning

Machine Learning in our everyday life

Core goal in supervised learning: generalization

Pivotal Advances (non Deep things)

Positioning

Warm-up: a first handcrafted classifier

Kernel methods: graceful methods Adaboost: combining weak learners

Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff)

Perceptron: travelling in time (1958--)

Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models

Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016)

AlphaFold (Jumper et al, Nature 2021)

Conclusion

Al, Machine Learning, Deep Learning

Today: data, software, computing power

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

In the news... as of Oct. 10th, 2021

Annotation/Image decoding

(from Farabet et al, 2013)

P300 Speller

Vintage P300 Speller

(from Breaking bad)

Modern P300 Speller (pictures from A. Rakotomamonjy, video from Robo Doc)

ML-cashing Amazon shops

AlphaGo (Silver et al. 2016)

Core goal in supervised learning: generalization

(from Keras Mnist Tutorial)

Generalization: from the training set to beyond

Design algorithms capable from pairs (measure, target), to create a predictors which, given a measure, estimates the corresponding target

Core goal in supervised learning: generalization... in practice

(from Train/Test Split and Cross Validation in Python)

(from Amazon AWS)

Outline

xordium -- captatio benevolentiae Al, Machine Learning, Deep Learning Machine Learning in our everyday life Core goal in supervised learning: generalization

Pivotal Advances (non Deep things)

Positioning

Warm-up: a first handcrafted classifier Kernel methods: graceful methods Adaboost: combining weak learners

Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff)

Perceptron: travelling in time (1958--)

Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models

Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016)

AlphaFold (Jumper et al, Nature 2021)

Conclusion

Positioning

V. Vapnik sets, at the end of the 70's, the mathematical basis of machine/statistical learning, at the intersection of computer science, statistics, and optimization

"ML is the study of computer algorithms that improve automatically through experience."

T. Mitchell, 1997

- ightharpoonup $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{c}$ are vectors
- $ightharpoonup \mathbf{w} = \mathbf{u} \mathbf{v}$ (red arrows)
- ightharpoonup Here: $0 < \lambda < 1$

Inner product $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

- ightharpoonup symmetric: $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- bilinear: $\langle \lambda \mathbf{u}_1 + \gamma \mathbf{u}_2, \mathbf{v} \rangle = \lambda \langle \mathbf{u}_1, \mathbf{v} \rangle + \gamma \langle \mathbf{u}_2, \mathbf{v} \rangle$
- ightharpoonup positive: $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$
- ▶ definite: $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Rightarrow \mathbf{u} = 0$

Inner product

- \blacktriangleright provides ${\cal X}$ with a structure
- can be viewed as a 'similarity'
- defines a norm $\|\cdot\|$ on \mathcal{X} : $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$

In \mathbb{R}^2

$$\mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} : \langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2$$

- $ightharpoonup \langle {f u}-{f v},{f e}
 angle > 0$: ${f u}-{f v}$ and ${f e}$ point to the 'same direction'
- $\langle \mathbf{u} \mathbf{v}, \mathbf{f} \rangle = 0$: $\mathbf{u} \mathbf{v}$ and \mathbf{f} are orthogonal
- $ightharpoonup \langle \mathbf{u} \mathbf{v}, \mathbf{g} \rangle < 0$: $\mathbf{u} \mathbf{v}$ and \mathbf{g} point to 'opposite directions'

Decision function

Classify points x according to which of the two class means \mathbf{c}^+ or \mathbf{c}^- is closer:

- ▶ for $x \in \mathcal{X}$, it is sufficient to take the sign of the inner product between w and x c
- ▶ if $h(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \mathbf{c} \rangle$, we have the classifier $f(\mathbf{x}) = \text{sign}(h(\mathbf{x}))$
- \blacktriangleright the (dotted) hyperplane (H), of normal vector w, is the decision surface

On evaluating h(x)

$$h(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} - \mathbf{c} \rangle = \langle \mathbf{w}, \mathbf{x} \rangle - \langle \mathbf{w}, \mathbf{c} \rangle = \dots$$

$$= \sum_{i=1,\dots,m} \alpha_i \langle \mathbf{x}_i, \mathbf{x} \rangle + b, \quad \text{with } b \text{ a real constant}$$

Inner products are sufficient (remember that)

Kernel methods: graceful methods

Silk methods

- Thereotical guarantees
- Convex optimization
- Nonlinearity handled through the kernel trick
- Success stories: structured data classification, ranking, scoring, theory

Kernel methods: graceful methods

Kernelizing the handcrafted classifier

$$h(\cdot) = \sum_{i=1,\dots,m} \alpha_i \langle \mathbf{x}_i, \cdot \rangle + b$$
 simply turns into

$$h(\mathbf{x}) = \sum_{i=1,...,m} \alpha_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b$$
, with b a real constant

where $k(\cdot,\cdot)$ has replaced $\langle\cdot,\cdot\rangle$ and computes an inner product on the nonlinear embedding of its arguments

Example: 2nd degree polynomial kernel

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Initialize: $D_1(i) = 1/m$ for i = 1, ..., m.

For t = 1, ..., T:

- Train weak learner using distribution D_t.
- Get weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

(from Freund and Schapire, 1997, 2012)

(from Raschka, https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html)

(from Raschka, https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html)

- ► Algorithmic simplicity, effectiveness
- Theoretical results
- ► Gödel price 2003

(from Raschka, https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html) Find an illustrative example of Adaboost running

Bandits: exploration vs. exploitation dilemma

How to make the best use of your budget and bet?

Features

- Problem easy to pose, many variations
- Exploration/exploitation dilemma
- ▶ Success stories: ad placement, recommendation, Go

Outline

Exordium -- captatio benevolentiae Al, Machine Learning, Deep Learning Machine Learning in our everyday life Core goal in supervised learning: generalization

Pivotal Advances (non Deep things)

Positioning

Warm-up: a first handcrafted classifier Kernel methods: graceful methods Adaboost: combining weak learners

Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff)

Perceptron: travelling in time (1958--)

Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models

Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016)

AlphaFold (Jumper et al, Nature 2021)

Conclusion

Perceptron, binary case (Rosenblatt, 1958)

Inspiration: (real) neural networks

Biological motivations

- Learning systems made of several simple computational units connected to each other
- Memory capacity / plasticity of these systems

Perceptron: a linear classifier, $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$

Perceptron, binary case (Rosenblatt, 1958)

Inspiration: (real) neural networks

Biological motivations

- Learning systems made of several simple computational units connected to each other
- Memory capacity / plasticity of these systems

Perceptron: a linear classifier, $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, +1\}$

- ightharpoonup Classifier parameters: $\mathbf{w} \in \mathbb{R}^d$
- ▶ Prediction of the classifier: $f(\mathbf{x}) = \text{sign}(\mathbf{w}, \mathbf{x})$
- ▶ Question: how to learn w from observations?

Perceptron, binary case (Rosenblatt, 1958)

Inspiration: (real) neural networks

Biological motivations

- Learning systems made of several simple computational units connected to each other
- Memory capacity / plasticity of these systems

Algorithm:
$$\mathcal{D} = \{(X_n, Y_n)\}_{n=1}^N$$
 $\mathbf{w} \leftarrow \mathbf{0}$ while there exists (X_n, Y_n) : $Y_n \langle \mathbf{w}, X_n \rangle \leq 0$ do $\mathbf{w} \leftarrow \mathbf{w} + Y_n X_n$ end while

Perceptron learning in action

Perceptron learning in action

Perceptron learning in action

Perceptron: a few results

Theorem (Bound on the number of updates, Novikoff, 1962)

If there exist $\gamma > 0$, \mathbf{w}^* , $\|\mathbf{w}^*\| = 1$, $\|X_n\| \le R$, $\forall n = 1, \ldots, N$, et $Y_n \langle \mathbf{w}^*, X_n \rangle \ge \gamma$ then the Perceptron algorithm converges in less than R^2/γ^2 updates

Theorem (XOR, Minsky, Papert, 1969)

The Perceptron (algorithm) cannot solve the XOR problem

Theorem (Generalization error, Vapnik et Chevonenkis, 1979)

 $\forall \mathbf{w} \in \mathbb{R}^d$: with high probability

$$R(w) \le \hat{R}(\mathbf{w}, \mathcal{D}) + \tilde{O}\left(\sqrt{\frac{d}{n}}\right)$$

Multilayer Perceptron, Convolutional Networks

Up until the 90's

- Feedforward networks
- Gradient backpropagation (Rumelhart et al. 86)
- ▶ Preferred task: multiclass classification

Multilayer Perceptron, Convolutional Networks

(By Aphex34 - Own work, CC BY-SA 4.0, Wikimedia CNN)

Since 2005

- Feedforward networks, recurrent networks
- Backpropagation (and autodiff), layerwise learning, computational power
- ► Tasks: almost everything (provided there is data)

But, more importantly

- ▶ Libraries: Tensorflow, Theano, Keras, Torch, Caffe (see 👌
- ► Hardware: GPU, TPU (Tensor Processing Units)
- Data...

Deep Learning: Hands-on

Visualization

https://tinyurl.com/ydclvgas

Keras Mnist Tutorial

https://tinyurl.com/ydzypus4

Dozens of examples can be found on Keras code examples page

Unsupervised Deep Learning: auto-encoders

(From An introduction to Autoencoders)

Code: https://www.tensorflow.org/tutorials/generative/autoencoder

Unsupervised Deep Learning: auto-encoders

(From Applied Deep Learning - Part 3: Autoencoders)

Unsupervised Deep Learning: auto-encoders

(From Building Autoencoders in Keras)

Unsupervised/Generative Deep Learning: Variational Auto-Encoders (Kingma and Welling, 2014)

(From Wikipedia VAE page)

Code: https://deeplearning.neuromatch.io/tutorials/W2D5_GenerativeModels/student/W2D5_Tutorial1.html

Generative Deep Learning: GANs, (Goodfellow and al, 2014

Generative Adversarial Network

(From GANs from Scracth)

Generative Deep Learning: GANs, (Goodfellow and al, 2014

(From NVidia Video)

Models Zoo

https://modelzoo.co

Outline

Exordium -- captatio benevolentiae

AI, Machine Learning, Deep Learning

Machine Learning in our everyday life

Core goal in supervised learning: generalization

Pivotal Advances (non Deep things)

Positioning

Warm-up: a first handcrafted classifier

Kernel methods: graceful methods Adaboost: combining weak learners

Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff)

Perceptron: travelling in time (1958--)

Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models

Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016) AlphaFold (Jumper et al, Nature 2021)

Conclusion

AlphaGo (Silver et al. 2016)

https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaGo (Silver et al. 2016)

(From AlphaGo Netflix (Deepmind youtube))

AlphaFold (Jumper et al, Nature 2021)

Median Free-Modelling Accuracy

(From AlphaFold: a solution to a 50-year-old grand challenge in biology)

AlphaFold (Jumper et al, Nature 2021)

(From Jumper et al, Nature, 2021)

AlphaFold (Jumper et al, Nature 2021)

A notebook to play around

(From AlphaFold Notebook)

Outline

Exordium -- captatio benevolentiae
Al, Machine Learning, Deep Learning
Machine Learning in our everyday life

Pivotal Advances (non Deep things

Positioning

Warm-up: a first handcrafted classifier

Kernel methods: graceful methods Adaboost: combining weak learners

Bandits: exploration vs. exploitation dilemma

Pivotal advances (deep stuff)

Perceptron: travelling in time (1958--)

Multilayer Perceptron, Feedforward Neural Netwokrs: longstanding models

Unsupervised / Generative models

Two success stories

AlphaGo (Silver et al. 2016)

AlphaFold (Jumper et al, Nature 2021)

Conclusion

Machine Learning: a Variety of Problems/Mixes

Many application fields

- ► Computer vision
- ► NLP
- Robotics
- Advertising, recommendation systems
- Games (Go, chess, poker)
- Biology

Many problems

- Algorithmics
- Statistics
- Modelling
- ... and beyond

Conclusion

Machine Learning: a field in itselft

- A vivid branch of Al
- ▶ At the crossroads of computer science and mathematics
- Ever-growing community (from applied research to more fundamental one)

Machine Learning is ubiquituous

- ► At the heart of data science
- In many real-world applications
- ▶ ML at the time of revisiting other well-established fields of research

Example of future problems

- ▶ ML and small datasets: prior knowledge, active learning, feature selection
- ML & other fields: game theory, cryptography, biology, physics, law...

Hot AI topics (personal take)

Revisit classical fields from the Machine Learning perspective

- Privacy-Preserving ML: MLize encryption mechanisms, distributed computing
- Repeated Mechanism Design: MLize game theory, deal with coopetitive and competitive agents
- ▶ Green ML: hardware-aware methods, communication-sensitive methods...