Exploring the versatility of LLMs for Relation extraction in underexplored biomedical areas

Maxime Delmas - 05/03/2024

Background

PhD (2019 - 2022)

INRA

Post doctoral position (2022 - now)

biomedicine Metabolomics Bayesian statistics Network analysis Natural Language Processing Knowledge Graph Web Sémantique Toucology Ontologies Data Integration Dep learning Explanability

LOTUS: An Open Knowledge Base for natural products

LOTUS: An Open Knowledge Base for natural products

% of entries

LOTUS: An Open Knowledge Base for natural products

Imbalance toward model organisms, few data for more exotic organisms

Automatic extraction of relations from the literature

Scientific literature & patents

Abstract

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

Extracted relations

Aspergillus ochraceus - Ochratoxin A Aspergillus westerdijkiae - Ochratoxin A Aspergillus steynii - Ochratoxin A

Monascus purpureus - Citrinin Penicillium expansum - Citrinin

End-to-end NER / RE

Named Entity Recognition for Bio-entities

In the era of machine learning, efficient models are supervised

In the era of machine learning, efficient models are supervised

the architecture (the weights)

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

Expected output labels

Aspergillus ochraceus - Ochratoxin A Aspergillus westerdijkiae - Ochratoxin A Aspergillus steynii - Ochratoxin A

Monascus purpureus - Citrinin Penicillium expansum - Citrinin

+

In the era of machine learning, efficient models are supervised

the architecture (the weights)

trained model

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of +vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

Expected output labels

Aspergillus ochraceus - Ochratoxin A Aspergillus westerdijkiae - Ochratoxin A Aspergillus steynii - Ochratoxin A

Monascus purpureus - Citrinin Penicillium expansum - Citrinin

In the era of machine learning, efficient models are supervised

Residue

(Symptom)

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers nd new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of +vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

But there is no curated datasets ...

trained model

Expected output labels

Aspergiillus ochraceus - Ochratoxin A Aspergiillus westerdijkiae - Ochratoxin A Aspergiillus steynii - Ochratoxin A

Monascus purpureus - Citrinin Penicillium expansum - Citrinin

L. Luo, P.-T. Lai, C.-H. Wei, C. N. Arighi, and Z. Lu, 'BioRED: a rich biomedical relation extraction dataset', Briefings in Bioinformatics, vol. 23, no. 5, p. bbac282, Sep. 2022, doi: 10.1093/bib/bbac282.

Let TUS Co Harmonization / Processing / Validation / Dissemination

Let TUS Co Harmonization / Processing / Validation / Dissemination

5-hydroxytryptamine-derived alkaloids from two

marine sponges of the genus Hyrtios.

Salmoun M, Devijver C ... van Soest RW • J. Nat. Prod.

🛇 Add to Collection 🛛 🛓 BiocXML

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4dihydro-1-oxo-beta-carboline (9).

```
Hyrtios erectus - Hyrtiosulawesine ✓

Hyrtios erectus - 5-hydroxy-1H-indole-3-carbaldehyde X

Hyrtios erectus - 1,2-bis(5-hydroxy-1H-indol-3-yl)ethane-1,2-dione X

Hyrtios erectus - 5-Hydroxytryptophol X

Hyrtios reticulatus - (1R)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,6-diol X

Hyrtios reticulatus - Serotonin ✓

Hyrtios reticulatus - (1R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-ol X

Hyrtios reticulatus - 2,3,4,9-Tetrahydro-6-hydroxy-1H-pyrido(3,4-b)indol-1-one X

Hyrtios reticulatus - (S)-6-Hydroxytetrahydroharman X
```

Discrepancies between text and expected output labels

Let TUS Co Harmonization / Processing / Validation / Dissemination

5-hydroxytryptamine-derived alkaloids from two

marine sponges of the genus Hyrtios.

Salmoun M, Devijver C ... van Soest RW • J. Nat. Prod.

🛇 Add to Collection 🛛 🛓 BiocXML

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4dihydro-1-oxo-beta-carboline (9).

```
Hyrtios erectus - Hyrtiosulawesine ✓

Hyrtios erectus - 5-hydroxy-1H-indole-3-carbaldehyde X

Hyrtios erectus - 1,2-bis(5-hydroxy-1H-indol-3-yl)ethane-1,2-dione X

Hyrtios erectus - 5-Hydroxytryptophol X

Hyrtios reticulatus - (1R)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,6-diol X

Hyrtios reticulatus - Serotonin ✓

Hyrtios reticulatus - (1R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-ol X

Hyrtios reticulatus - 2,3,4,9-Tetrahydro-6-hydroxy-1H-pyrido(3,4-b)indol-1-one X

Hyrtios reticulatus - (S)-6-Hydroxytetrahydroharman X
```

Discrepancies between text and expected output labels

Not design for building NLP related datasets

Let TUS Co Harmonization / Processing / Validation / Dissemination

5-hydroxytryptamine-derived alkaloids from two

marine sponges of the genus Hyrtios.

Salmoun M, Devijver C ... van Soest RW • J. Nat. Prod.

🛇 Add to Collection 🛛 🛓 BiocXML

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4dihydro-1-oxo-beta-carboline (9).

```
Hyrtios erectus - Hyrtiosulawesine ✓

Hyrtios erectus - 5-hydroxy-1H-indole-3-carbaldehyde X

Hyrtios erectus - 1,2-bis(5-hydroxy-1H-indol-3-yl)ethane-1,2-dione X

Hyrtios erectus - 5-Hydroxytryptophol X

Hyrtios reticulatus - (1R)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,6-diol X

Hyrtios reticulatus - Serotonin ✓

Hyrtios reticulatus - (1R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-ol X

Hyrtios reticulatus - 2,3,4,9-Tetrahydro-6-hydroxy-1H-pyrido(3,4-b)indol-1-one X

Hyrtios reticulatus - (S)-6-Hydroxytetrahydroharman X
```

Discrepancies between text and expected output labels

Not design for building NLP related datasets

Can LLM help us in this context ?

Bert	rt: Pre-training of deep bidirectional transformers for language understanding				
J De B 2018 ☆ E	Electra: Pre-training text encoders as discriminators rather than generators				
	<u>K Clark</u> , <u>N</u> back-p gains fi ☆ Enregi	Roberta: A robustly optimized bert pretraining approach			
		Y Liu, M Ott, N Goyal, J Du, M Joshi, D Chen arXiv preprint arXiv, 2019 - arxiv.org			
		We find that BERT was significantly undertrained and propose an improved BERT models, which we call ROBERTa , that can match or exceed the performance of all of the post- BERT .			
-		☆ Enregistrer 功 Citer Cité 9454 fois Autres articles Les 6 versions ≫			

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were

GPT: Generative Pre-trained Models

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their

GPT: Generative Pre-trained Models

(the weights - Billions)

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral

GPT: Generative Pre-trained Models

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties

Learn a representation of the text

GPT: Generative Pre-trained Models

Task: Predict the next word

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties

Learn a representation of the text

How Can We Know What Language Models Know?

Zhengbao Jiang^{1*} Frank F. Xu^{1*} Jun Araki² Graham Neubig¹ Language Technologies Institute, Carnegie Mellon University¹ Bosch Research North America² {zhengbaj, fangzhex, gneubig}@cs.cmu.edu jun.araki@us.bosch.com

Knowledgeable or Educated Guess? Revisiting Language Models as **Knowledge Bases**

Boxi Cao^{1,3}, Hongyu Lin¹, Xianpei Han^{1,2}, Le Sun^{1,2} Lingvong Yan^{1,3}, Meng Liao⁴, Tong Xue⁴, Jin Xu⁴ ¹Chinese Information Processing Laboratory ²State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences, Beijing, China ³University of Chinese Academy of Sciences, Beijing, China ⁴Data Quality Team, WeChat, Tencent Inc., China {boxi2020, hongyu, xianpei, sunle, lingyong2014}@iscas.ac.cn {maricoliao, xavierxue, jinxxu}@tencent.com

WoLA: Carefully Benchmarking World Knowledge of Large Language Models

Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Ly, Hao Peng, Zijun Yao, Xiaohan Zhang, Hanming Li, Chunyang Li, Zhevuan Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianvi Lin, Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu, Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang, Juanzi Li[†] Tsinghua University Beijing, China 100084 kola-benchmark@googlegroups.com

{fabiopetroni, rockt, plewis, yolo, yuxiangwu, ahm, sriedel}@fb.com

Text as a projection of the world: real knowledge ?

Evaluating Open-QA Evaluation			Evaluating Open-QA Evaluation
Cuardang Wang, 'SiPard Cheng, 'Cippeng Gao,' Yuanahao Yue', Bowen Diang,' Zahian Xe', Yonng Wang, 'Xianghua Hu, 'Zong Zhang,' and Yue Zhang,' 'School of Engineemic, Woodda U Horsov, China "Northeasem University, China,' Amazon NdS AJ, 'Fulua U Horizong,' China (uengeonitary, Canagove) ShortLand, eds., or	The Internal State of an LLM Knows When It's Lying		
	Amos Azaria School of Computer Science, Ariel University, Israel	Tom Mitchell Machine Learning Dept., Carnegie Mellon University, Pittsburgh, PA	Cunxiang Wang ¹ ; Sirui Cheng ² ; Qipeng Guo ³ , Yuanhao Yue ⁴ , Bowen Ding ¹ , Zhikun Xu ⁴ , Yidong Wang ¹ , Xiangkun Hu ³ , Zheng Zhang ¹ , and Yue Zhang ^{1†} ¹ School of Engineering, Westlake University, China ² Northeastern University, China: ³ Amazon AWS Ai, ⁴ Fudan University, China
Statistical Knowledge Assessment for Large Language Models			{wangcunxiang, zhangyue}@westlake.edu.cn
Qingxiu Dong ¹ , Jingjing Xu ² , Lingpeng Kong ¹ , Zhifang Sui ¹ and Lei Li ⁴	Measuring and Modifying Factual K	nowledge in Large Language Models	Language Models as Knowledge Bases?
¹ National Key Laboratory for Multimedia Information Processing. School of Computer Science, Peking University ² Shanghai Al Lab ³ The University of Hong Kong ⁴ Carnegie Mellon University dqx@stu.pku.edu.cn, (jingjingxu, szf)@pku.edu.cn, lpk@cs.hku.hk, leili@cs.cmu.ed	ed Pouya Pezeshkpour Megagon Labs		Fabio Petroni ¹ Tim Rocktäschel ^{1,2} Patrick Lewis ^{1,2} Anton Bakhtin ¹ Yuxiang Wu ^{1,2} Alexander H. Miller ¹ Sebastian Riedel ^{1,2} ¹ Facebook AI Research ² University College London

Evaluating Open-Domain Question Answering in the Era of Large Language Models

Ehsan Kamalloo 🌣 Nouha Dziri Charles L. A. Clarke Davood Rafiei 🛇

Megagon Lab pouya@megagon.ai
LLM as Knowledge bases ?

But, this literature has already been "digested" during pre-training !

LLM as Knowledge bases ?

Publed

> 35 million citations

Hard to process ...

But, this literature has already been "digested" during pre-training !

- Short answer: No ...
- Low global retrieval performances
- Correct predictions are mostly leaks E.g: Monascus Pilosus produces monascin
- Some predictions are generics E.g: Aspergillus Niger or Ergosterol

M. Wysocka, O. Wysocki, M. Delmas, V. Mutel, and A. Freitas, 'Large Language Models, scientific knowledge and factuality: A systematic analysis in antibiotic discovery'. arXiv, Dec. 05, 2023. doi: 10.48550/arXiv.2305.17819.

LLM as Knowledge bases ?

Pub

> 35 million citations

Hard to process ...

But, this literature has already been "digested" during pre-training !

- Short answer: No ...
- Low global retrieval performances
- Correct predictions are mostly leaks E.g: Monascus Pilosus produces monascin
- Some predictions are generics E.g: Aspergillus Niger or Ergosterol

Supervised P + US *text* ≠ *output labels*

	precision	recall	f1
Seq2rel	47.3	5.8	10.4
GPT-2	44.8	21.7	29.3
BioGPT	42.2	26.5	32.5

(Weakly) supervised

Language Models are Few-Shot Learners

Tom B. Bro	wn*	Benjamin	Mann*	Nick I	Ryder* Me	lanie Subbiah*
Jared Kaplan [†]	Prafulla	Dhariwal	Arvind N	eelakantan	Pranav Shyam	Girish Sastry
Amanda Askell	Sandhini	Agarwal	Ariel Herb	ert-Voss	Gretchen Krueger	Tom Henighan
Rewon Child	Aditya	Ramesh	Daniel M.	Ziegler	Jeffrey Wu	Clemens Winter
Christopher He	sse	Mark Chen	Eric	Sigler	Mateusz Litwin	Scott Gray
Benjar	nin Chess		Jack Cla	rk	Christopher	Berner
Sam McCan	dlish	Alec R:	adford	Ilya Su	utskever	Dario Amodei
			Open	AI		

"The model is conditioned on a natural language instruction and/or a few demonstrations of the task and is then expected to complete further instances of the task simply by predicting what comes next."

Use the representation learned during pre-training

Poor English input: I eated the purple berries.
Good English output: I ate the purple berries.
Poor English input: Thank you for picking me as your designer. I'd appreciate it.
Good English output: Thank you for choosing me as your designer. I appreciate it.
Poor English input: The mentioned changes have done. or I did the alteration that you requested. or I changed things you wanted and did the modifications.
Good English output: The requested changes have been made. or I made the alteration that you requested. or I changed things you wanted and made the modifications.
Poor English input: I'd be more than happy to work with you in another project.
Good English output: LLM completing ...

Use the representation learned during pre-training

Poor English input: I eated the purple berries.
Good English output: I ate the purple berries.
Poor English input: Thank you for picking me as your designer. I'd appreciate it.
Good English output: Thank you for choosing me as your designer. I appreciate it.
Poor English input: The mentioned changes have done. or I did the alteration that you requested. or I changed things you wanted and did the modifications.
Good English output: The requested changes have been made. or I made the alteration that you requested. or I changed things you wanted and made the modifications.
Poor English input: I'd be more than happy to work with you in another project.

Instruction	The task is to extract relations between organisms and chemicals from the input text.
ſ	INPUT: The antimicrobially active EtOH extracts of Maytenus heterophylla yielded a new dihydroagarofuran alkaloid, 1beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran, together with the known compounds beta-amyrin, maytenfolic acid,
	OUTPUT: Maytenus heterophylla produces 1beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran. Maytenus heterophylla produces beta-amyrin. Maytenus heterophylla produces maytenfolic acid.
	INPUT: Ten new ergosteroids, gloeophyllins A-J (1-10), have been isolated from the solid cultures of Gloeophyllum abietinum. OUTPUT: Gloeophyllum abietinum produces gloeophyllin A. Gloeophyllum abietinum produces gloeophyllin B. Gloeophyllum abietinum produces gloeophyllin C. Gloeophyllum abietinum produces gloeophyllin D. Gloeophyllum abietinum produces gloeophyllin I. Gloeophyllum abietinum produces gloeophyllin J.
Demonstrations ~	INPUT : The present work describes the isolation of the cyclic peptides geodiamolides A, B, H and I (1-4) from G. corticostylifera and their anti-proliferative effects against sea urchin eggs and human breast cancer cell lineages. OUTPUT : G. corticostylifera produces geodiamolide A. G. corticostylifera produces geodiamolide B []
Archetypal	INPUT: Four new cyclic peptides, patellamide G (2) and ulithiacyclamides E-G (3-5), along with the known patellamides A-C (6-8) and ulithiacyclamide B (9), were isolated from the ascidian Lissoclinum patella collected in Pohnpei, Federated States of Micronesia. OUTPUT: Lissoclinum patella produces patellamide G. Lissoclinum patella produces ulithiacyclamide E. Lissoclinum patella produces ulithiacyclamide F. Lissoclinum patella produces ulithiacyclamide B.
	INPUT: Chemical investigation of Trogopterus faeces has led to the isolation of seven flavonoids. Their structures were elucidated by chemical and spectral analyses. In an anticoagulative assay, three kaempferol coumaroyl rhamnosides had significant antithrombin activity. This is the first report on the occurrence of flavonoid glycosides in Trogopterus faeces. OUTPUT: Trogopterus faeces produces flavonoids. Trogopterus faeces produces kaempferol coumaroyl rhamnosides. Trogopterus faeces produces flavonoid glycosides.
New Instance	INPUT: ** Abstract **
To fill	OUTPUT: [LLM completing]

Instruction	The task is to extract relations between organisms and chemicals from the input text.
ſ	INPUT: The antimicrobially active EtOH extracts of Maytenus heterophylla yielded a new dihydroagarofuran alkaloid, 1beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran, together with the known compounds beta-amyrin, maytenfolic acid,
	OUTPUT: Maytenus heterophylla produces 1beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran. Maytenus heterophylla produces beta-amyrin. Maytenus heterophylla produces maytenfolic acid.
	INPUT: Ten new ergosteroids, gloeophyllins A-J (1-10), have been isolated from the solid cultures of Gloeophyllum abietinum. OUTPUT: Gloeophyllum abietinum produces gloeophyllin A. Gloeophyllum abietinum produces gloeophyllin B. Gloeophyllum abietinum produces gloeophyllin C. Gloeophyllum abietinum produces gloeophyllin D. Gloeophyllum abietinum produces gloeophyllin I. Gloeophyllum abietinum produces gloeophyllin J.
Demonstrations \prec	INPUT: The present work describes the isolation of the cyclic peptides geodiamolides A, B, H and I (1-4) from G. corticostylifera and their anti-proliferative effects against sea urchin eggs and human breast cancer cell lineages. OUTPUT: G. corticostylifera produces geodiamolide A. G. corticostylifera produces geodiamolide B []
Archetypal sentences	INPUT: Four new cyclic peptides, patellamide G (2) and ulithiacyclamides E-G (3-5), along with the known patellamides A-C (6-8) and ulithiacyclamide B (9), were isolated from the ascidian Lissoclinum patella collected in Pohnpei, Federated States of Micronesia. OUTPUT: Lissoclinum patella produces patellamide G. Lissoclinum patella produces ulithiacyclamide E. Lissoclinum patella produces ulithiacyclamide F. Lissoclinum patella produces ulithiacyclamide B.
	INPUT: Chemical investigation of Trogopterus faeces has led to the isolation of seven flavonoids. Their structures were elucidated by chemical and spectral analyses. In an anticoagulative assay, three kaempferol coumaroyl rhamnosides had significant antithrombin activity. This is the first report on the occurrence of flavonoid glycosides in Trogopterus faeces. OUTPUT: Trogopterus faeces produces flavonoids. Trogopterus faeces produces kaempferol coumaroyl rhamnosides. Trogopterus faeces produces flavonoid glycosides.
New Instance —	 INPUT: Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4-dihydroxy-3,4-dihydro-beta-carboline (9).
To fill	OUTPUT: Hyrtios erectus produces byrtiosulawesine. Hyrtios erectus produces 5-bydroxyindole-3-carbaldebyde. Hyrtios erectus produces byrtiosin B

supplements based on rice fermented with red microfungi Monascus purpureus and in

foodstuffs of animal origin (e.g., cheese).

Creating controlled synthetic input text from the expected relations

Expected relations

Aspergillus ochraceus - Ochratoxin A Aspergillus westerdijkiae - Ochratoxin A Aspergillus steynii - Ochratoxin A

Monascus purpureus - Citrinin Penicillium expansum - Citrinin

What is inside a PubMed entry ?

What do we need ?

> J Nat Prod. 2002 Aug;65(8):1173-6. doi: 10.1021/np020009+.

5-hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios

Mostafa Salmoun¹, Christine Devijver, Désiré Daloze, Jean-Claude Braekman, Rob W M van Soest

Affiliations + expand PMID: 12193025 DOI: 10.1021/np020009+

Abstract

Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1 methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4-dihydro1-oxo-beta-carboline (9).

MeSH terms

- > Animals
- > Chromatography, Thin Layer
- > Indole Alkaloids / chemistry
- > Indole Alkaloids / isolation & purification*
- > Indonesia
- > Molecular Structure
- > Nuclear Magnetic Resonance, Biomolecular
- > Porifera / chemistry*
- > Serotonin / analogs & derivatives*
- > Serotonin / chemistry
- > Serotonin / isolation & purification*
- > Spectrophotometry, Ultraviolet
- > Stereoisomerism

The abstract (What we want to generate)

— Some keywords / keyphrases

A title

What is inside a PubMed entry ?

What do we need ?

> J Nat Prod. 2002 Aug;65(8):1173-6. doi: 10.1021/np020009+.

5-hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios

Mostafa Salmoun¹, Christine Devijver, Désiré Daloze, Jean-Claude Braekman, Rob W M van Soest

Affiliations + expand PMID: 12193025 DOI: 10.1021/np020009+

Abstract

Given a title, some keywords and the main findings (expected relations), create a scientific abstract

MeSH terms

- > Animals
- > Chromatography, Thin Layer
- > Indole Alkaloids / chemistry
- > Indole Alkaloids / isolation & purification*
- > Indonesia
- > Molecular Structure
- > Nuclear Magnetic Resonance, Biomolecular
- > Porifera / chemistry*
- > Serotonin / analogs & derivatives*
- > Serotonin / chemistry
- > Serotonin / isolation & purification*
- > Spectrophotometry, Ultraviolet
- > Stereoisomerism

— The abstract (What we want to generate)

——— Some keywords / keyphrases

A title

Not all articles have MeSH

> J Nat Prod. 2009 Jul;72(7):1361-3. doi: 10.1021/np900181q.

Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system

Lukasz M Kutrzeba¹, Daneel Ferreira, Jordan K Zjawiony Affiliations + expand

Abstract

A search for biosynthetic precursors of salvinorin A (1) led to the isolation of a new neoclerodane diterpenoid hemiacetal mixture, salvinorins J (2), from the chloroform extract of Salvia divinorum. A leaf surface extraction method was used on S. divinorum, affording a chlorophyll-free extract containing predominantly neoclerodane diterpenoids, including the new salvinorins J (2) and 14 known analogues. Salvinorins J (2) represent an example of a neoclerodane hemiacetal (lactol) susceptible to mutarotation with the formation of an equilibrium mixture of C-17 epimers.

> J Nat Prod. 2009 Jul;72(7):1361-3. doi: 10.1021/np900181q.

Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system

Lukasz M Kutrzeba¹, Daneel Ferreira, Jordan K Zjawiony

Affiliations + expand

Abstract

The neoclerodane system of Salvia divinorum has been found to undergo mutarotation, resulting in the formation of c-17 epimers. This was confirmed through the isolation and identification of several compounds from the plant using a leaf surface extraction method. The compounds isolated include Salvinorin A (1), Salvinorin B (2), Salvinorins F-H (3-5), (-)-Hardwickiic acid (6) and divinatorins A-C (7-9). These findings provide new insights into the chemical diversity of Salvia divinorum and highlight the importance of considering mutarotation in the study of neoclerodane systems.

Which one is synthetic?

> J Nat Prod. 2009 Jul;72(7):1361-3. doi: 10.1021/np900181q.

Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system

Lukasz M Kutrzeba¹, Daneel Ferreira, Jordan K Zjawiony Affiliations + expand

Abstract

A search for biosynthetic precursors of salvinorin A (1) led to the isolation of a new neoclerodane diterpenoid hemiacetal mixture, salvinorins J (2), from the chloroform extract of Salvia divinorum. A leaf surface extraction method was used on S. divinorum, affording a chlorophyll-free extract containing predominantly neoclerodane diterpenoids, including the new salvinorins J (2) and 14 known analogues. Salvinorins J (2) represent an example of a neoclerodane hemiacetal (lactol) susceptible to mutarotation with the formation of an equilibrium mixture of C-17 epimers.

> J Nat Prod. 2009 Jul;72(7):1361-3. doi: 10.1021/np900181q.

Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system

Lukasz M Kutrzeba ¹, Daneel Ferreira, Jordan K Zjawiony

Affiliations + expand

Abstract

The neoclerodane system of Salvia divinorum has been found to undergo mutarotation, resulting in the formation of c-17 epimers. This was confirmed through the isolation and identification of several compounds from the plant using a leaf surface extraction method. The compounds isolated include Salvinorin A (1), Salvinorin B (2), Salvinorins F-H (3-5), (-)-Hardwickiic acid (6) and divinatorins A-C (7-9). These findings provide new insights into the chemical diversity of Salvia divinorum and highlight the importance of considering mutarotation in the study of neoclerodane systems.

Re-training on synthetic data

Supervised

(Weakly) supervised

text ≠ output labels

1	angua	ige Mot	iels are i	rew-S	not Learne	rs
Tom B. Bro	wn"	Benjamin	Mann*	Nick I	Ryder' Me	lanic Subbiah"
Jared Kaplan [†]	Prafulla	Dhariwal	Arvind Neel	lakantan	Pranav Shyan	Girish Sastry
Amanda Askell	Sandhin	i Agarwal	Ariel Herber	t-Voss	Gretchen Kruege	Tom Henighan
Rewon Child	Aditya	Ramesh	Daniel M. Z	legler	Jeffrey Wu	Clemens Winter
Christopher H	esse	Mark Chen	Eric Sig	gler	Mateusz Litwin	Scott Gray
Benja	min Chess		Jack Clark		Christophe	Berner
Sam McCar	ndlish	Alec Ra	adford	Ilya Su	itskever	Dario Amodei

OpenAI

	precision	recall	f1
Seq2rel	47.3	5.8	10.4
GPT-2	44.8	21.7	29.3
BioGPT	42.2	26.5	32.5

LLM	precision	recall	f1
Llama-7B	27.0	9.04	13.55
Llama-13B	35.64	23.64	28.49
Llama-30B	38.51	23.24	28.99
Llama-65B	40.16	22.97	29.23
Alpaca-7B	15.14	2.21	5.86
Vicuna-13B	38.4	20.43	26.48

Re-training on synthetic data

Supervised

text ≠ output labels

(Moak		Orvie od
IVVEAN		
(··· · ································	

Language Models are Few-Shot Learners

 Torn B. Inverse
 Bagains Manni
 Nikk Kyder
 Madan Sakhi

 Jared Kaplani
 Paralula
 Paralula
 Paralula
 Grids Kashi

 Ananda Askali
 Samiliti Xarrani
 Arind Netektani
 Paralula
 Grids Kashi

 Resen Child
 Attage
 Ananica Marina
 Grids Kashi
 Grids Kashi

 Resen Child
 Attage
 Bande Marina
 Belle Witter
 Grids Watter

 Christen Harmania
 Belle Witter
 Belle Chart
 Berling Watter
 Grids Watter

 Banding Cambin
 Belle Watter
 Belle Chart
 Berling Watter
 Berling Watter

OpenAI

Supervised - on synthetic data

	precision	recall	f1
Seq2rel	47.3	5.8	10.4
GPT-2	44.8	21.7	29.3
BioGPT	42.2	26.5	32.5

LLM	precision	recall	f1
Llama-7B	27.0	9.04	13.55
Llama-13B	35.64	23.64	28.49
Llama-30B	38.51	23.24	28.99
Llama-65B	40.16	22.97	29.23
Alpaca-7B	15.14	2.21	5.86
Vicuna-13B	38.4	20.43	26.48

model	precision	recall	f1
seq2rel	65.1 <u>(+17.8)</u>	29.9 <mark>(+22.0)</mark>	41.0 (+28.9)
GPT2	52.0 <mark>(+7.2)</mark>	<u>44.6 (+22.9)</u>	<u>48.0 (+18.7)</u>
BioGPT	<u>63.7 (+21.5)</u>	46.5 (+20.0)	53.8 (+21.3)

Re-training on synthetic data

Supervised

text ≠ output labels

(Moakiv)	clinorvicor
(vvcariv)	JUDEI 113E

Language Models are Few-Shot Learners

Christonher H Eric Siele Scott Gra Sam McCandlin

OpenAI

Supervised - on synthetic data

	precision	recall	f1
Seq2rel	47.3	5.8	10.4
GPT-2	44.8	21.7	29.3
BioGPT	42.2	26.5	32.5

LLM	precision	recall	f1
Llama-7B	27.0	9.04	13.55
Llama-13B	35.64	23.64	28.49
Llama-30B	38.51	23.24	28.99
Llama-65B	40.16	22.97	29.23
Alpaca-7B	15.14	2.21	5.86
Vicuna-13B	38.4	20.43	26.48

model	precision	recall	f1
seq2rel	65.1 <u>(+17.8)</u>	29.9 (+22.0)	41.0 (+28.9)
GPT2	52.0 <mark>(+7.2)</mark>	<u>44.6 (+22.9)</u>	<u>48.0 (+18.7)</u>
BioGPT	<u>63.7 (+21.5)</u>	46.5 (+20.0)	53.8 (+21.3)
		: 7	
model	precision	recall	f1
BioGPT-Large	69	51.6	59.0

• Fine-tuning: garbage in, garbage out !

- Fine-tuning: garbage in, garbage out !
- Impressive few-shot learners, but language models above all

- Fine-tuning: garbage in, garbage out !
- Impressive few-shot learners, but **language models** above all
- Better Synthetic Data Generator (Knowledge distillation)

- Fine-tuning: garbage in, garbage out !
- Impressive few-shot learners, but **language models** above all
- Better Synthetic Data Generator (Knowledge distillation)
- Multi-lingual opportunities

- Fine-tuning: garbage in, garbage out !
- Impressive few-shot learners, but **language models** above all
- Better Synthetic Data Generator (Knowledge distillation)
- Multi-lingual opportunities

But,

- Narrow range of "styles" compared to human-written abstracts
- Hard to control the quality
- LLM evolve fast (15 Feb. 2024 *BioMistral*)

Thanks for your attention

André Freitas Magdalena Wysocka

<u>https://github.com/idiap/abroad-re</u>
<u>https://github.com/idiap/gme-sampler</u>

Relation Extraction in underexplored biomedical domains: A diversity-optimised sampling and synthetic data generation approach

A PREPRINT

Maxime Delmas*1, Magdalena Wysocka2, and André Freitas1.2.3

¹Idiap Research Institute, Switzerland ²Digital Experimental Cancer Holdicine Team, Cancer Biomarker Centre, CRUK Manchester Institute ³Department of Computer Science, University of Manchester

arXiv https://arxiv.org/pdf/2311.06364.pdf

model	Training	precision	recall	f1
Llama-7B	Few-shots learning (5-shots)	27.0	9.04	13.55
Llama-13B		35.64	23.64	28.49
Llama-30B		38.51	<u>23.24</u>	28.99
Llama-65B		<u>40.16</u>	22.97	<u>29.23</u>
Alpaca-7B		15.14	2.21	5.86
Vicuna-13B		38.4	20.43	26.48
	Random-raw	43.2 +/- (6.67)	4.8 +/- (1.16)	8.6 +/- (2.00)
	Diversty-raw	39.6	5.4	9.5
	Extended-raw	47.3	5.8	10.4
Seq2rel	Full	45.6	7.1	12.2
	Random-raw	32.5 +/- (4.83)	11.8 +/- (5.25)	15.0 +/- (2.54)
	Diversty-raw	22.3	19.2	20.6
	Extended-raw	44.8	21.7	29.3
GPT2-QLoRA	Full	47.5	22.5	30.5
	Random-raw	47.2 +/- (4.01)	19.8 +/- (2.71)	27.6 +/- (2.48)
	Diversty-raw	37.1	28.4	32.2
	Extended-raw	42.2	26.5	32.5
BioGPT-QLoRa	Full	46.7	21.3	29.3

model	Dataset	precision	recall	f1
	Random-synt.	62.4 +/- (1.03)	26.8 +/- (1.96)	37.5 +/- (1.90)
	Diversty-synt.	61.5	30.7	40.1
Seq2rel	Extended-synt.	65.1	29.9	41.0
	Random-synt.	42.6 +/- (2.89)	32.7 +/- (2.81)	37.2 +/- (2.80)
	Diversty-synt.	28.5	39.4	33.0
GPT2-QLoRA	Extended-synt.	52.0	<u>44.6</u>	<u>48.0</u>
	Random-synt.	56.4 +/- (2.26)	38.8 +/- (1.92)	46.0 +/- 1.08
	Diversty-synt.	53.1	41.6	46.6
BioGPT-QLoRa	Extended-synt.	<u>63.7</u>	46.5	53.8

Score ranges

Diversity-synt-2-NO-selector

34.3

45.8

39.2