Exploring the versatility of LLMs for Relation extraction in underexplored biomedical areas

Maxime Delmas - 05/03/2024

Background

Post doctoral position (2022 - now)

biomedicine Bayesian statistic Network analysis Natural Language Processing Knowledge Graph Web Sémantique Toxicology Ontologies Data Integration Deep learning Metabolomics eeppreaninining

Network analysis
Deep learning
Explainability
biomedicine
Web Sémantique

五

Network

PhD (2019-2022)

路

Study context: avoiding rediscoveries

Where is this knowledge ?

Databases

Scientific literature \& patents

Study context: avoiding rediscoveries

\qquad
 \section*{\section*{Data on＞ 276000 natural products
 \section*{\section*{Data on＞ 276000 natural products

 Data on＞276000 natural products

 Data on＞276000 natural products
 $_1 \sim 276000$ natural products}
 \title{
LOTUS：An Open Knowledge Base for natural products
}
 \title{
LOTUS：An Open Knowledge Base for natural products
}

LOTUS：An Open Knowles

[^0]
都

Data on＞276000 natural products

（a）

LOTUS: An Open Knowledge Base for natural products

LeTUS
 Data on >276,518 natural products

Sitosterol
Arabidopsis thaliana

LOTUS: An Open Knowledge Base for natural products

LeTUS
 Data on >276,518 natural products

Sitosterol
Arabidopsis thaliana

Imbalance toward model organisms, few data for more exotic organisms

Automatic extraction of relations from the literature

 Scientific literature \& patents
 Dztabases

Abstract
Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

How to build a Relation Extraction model - recipe

[^1] . -
\qquad

\square

In the era of machine learning, efficient models are supervised

都

How to build a Relation Extraction model - recipe

In the era of machine learning, efficient models are supervised

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

The data

Expected output labels

Aspergillus ochraceus - Ochratoxin A Aspergillus westerdijkiae - Ochratoxin A Aspergillus steynii - Ochratoxin A

Monascus purpureus - Citrinin Penicillium expansum - Citrinin

How to build a Relation Extraction model - recipe

In the era of machine learning, efficient models are supervised

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now on the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P . nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

The data

Expected output labels

Aspergillus ochraceus - Ochratoxin A Aspergillus westerdijkiae - Ochratoxin A Aspergillus steynii - Ochratoxin A

Monascus purpureus - Citrinin Penicillium expansum - Citrinin

How to build a Relation Extraction model - recipe

In the era of machine learning, efficient models are supervised

But what about LOTUS ?

LTH US Harmonization / Processing / Validation / Dissemination

But what about LOTUS?

UTC J Hi Harmonization / Processing / Validation / Dissemination

5-hydroxytryptamine-derived alkaloids from two

 marine sponges of the genus Hyrtios.Salmoun M, Devijver C ... van Soest RW • J. Nat. Prod.

O Add to Collection BiocXML

Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4-dihydro-1-oxo-beta-carboline (9).

Hyrtios erectus - Hyrtiosulawesine ,
Hyrtios erectus - 5-hydroxy-1H-indole-3-carbaldehyde \mathbf{X}
Hyrtios erectus - 1,2-bis(5-hydroxy-1 H-indol-3-yl)ethane-1,2-dione \mathbf{X}
Hyrtios erectus - 5-Hydroxytryptophol X
Hyrtios reticulatus - (1R)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,6-diol \mathbf{X}
Hyrtios reticulatus - Serotonin $\sqrt{\text { V }}$
Hyrtios reticulatus - (1R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-ol
Hyrtios reticulatus - 2,3,4,9-Tetrahydro-6-hydroxy-1H-pyrido(3,4-b)indol-1-one
Hyrtios reticulatus - (S)-6-Hydroxytetrahydroharman \mathbf{X}

Discrepancies between text and expected output labels

But what about LOTUS?

LTCUS Harmonization / Processing / Validation / Dissemination

5-hydroxytryptamine-derived alkaloids from two

 marine sponges of the genus Hyrtios.Salmoun M, Devijver C ... van Soest RW • J. Nat. Prod.

O Add to Collection BiocXML

Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4-dihydro-1-oxo-beta-carboline (9).

Hyrtios erectus - Hyrtiosulawesine ,
Hyrtios erectus - 5-hydroxy-1H-indole-3-carbaldehyde \mathbf{X}
Hyrtios erectus - 1,2-bis(5-hydroxy-1 H-indol-3-yl)ethane-1,2-dione \mathbf{X}
Hyrtios erectus - 5-Hydroxytryptophol X
Hyrtios reticulatus - (1R)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,6-diol \mathbf{X}
Hyrtios reticulatus - Serotonin $\sqrt{\text { V }}$
Hyrtios reticulatus - (1R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-ol
Hyrtios reticulatus - 2,3,4,9-Tetrahydro-6-hydroxy-1H-pyrido(3,4-b)indol-1-one
Hyrtios reticulatus - (S)-6-Hydroxytetrahydroharman \mathbf{X}

Discrepancies between text and expected output labels

But what about LOTUS?

UTC J Hi Harmonization / Processing / Validation / Dissemination

5-hydroxytryptamine-derived alkaloids from two

 marine sponges of the genus Hyrtios.Salmoun M, Devijver C ... van Soest RW • J. Nat. Prod.

O Add to Collection BiocXML

Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4-dihydro-1-oxo-beta-carboline (9).

Hyrtios erectus - Hyrtiosulawesine ,
Hyrtios erectus - 5-hydroxy-1H-indole-3-carbaldehyde \mathbf{X}
Hyrtios erectus - 1,2-bis(5-hydroxy-1 H-indol-3-yl)ethane-1,2-dione \mathbf{X}
Hyrtios erectus - 5-Hydroxytryptophol X
Hyrtios reticulatus - (1R)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-1,6-diol \mathbf{X}
Hyrtios reticulatus - Serotonin $\sqrt{\text { V }}$
Hyrtios reticulatus - (1R)-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-6-ol
Hyrtios reticulatus - 2,3,4,9-Tetrahydro-6-hydroxy-1H-pyrido(3,4-b)indol-1-one
Hyrtios reticulatus - (S)-6-Hydroxytetrahydroharman \mathbf{X}

Discrepancies between text and expected output labels

Not design for building NLP related datasets
Can LLM help us in this context?

What are Large Language Models ?

Transformers

decoder

\qquad

[^2]

What are Large Language Models?

[^3]

What are Large Language Models?

What are Large Language Models?

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

the architecture
(the weights - Billions)
Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties

Learn a representation of the text

Pre-trained / Fundation models

GPT: Generative Pre-trained Models

Task: Predict the next word
Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties

Learn a representation of the text

How Can We Know What Language Models Know?

Zhengbao Jiang ${ }^{1 *}$ Frank F. Xu ${ }^{1 *}$ Jun Araki ${ }^{2} \quad$ Graham Neubig ${ }^{1}$
Language Technologies Institute, Carnegie Mellon University ${ }^{1}$
Bosch Research North America
\{zhengbaj,fangzhex, gneubig\}@cs.cmu.edu jun.araki@us.bosch.com

Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Base

Evaluating Open-Domain Question Answering in the Era of Large Language Models

Lingyong Yan ${ }^{1,3}$, Meng Liao ${ }^{4}$, Tong Xue ${ }^{4}$, Jin Xu gey Laboratory of
Chinese Information Processing Laboratory ${ }^{2}$ State Key Laboratory of Computer Science ${ }^{3}$ Unir ${ }^{4}$ Data Quality Team, WeChat, Tencent Inc., China
\{boxi2020, hongyu, xianpei, sunle, lingyong2014\}@iscas.ac.on 20, hongyu, xianpei, sunle, lingyong2014\}@iscas
\{maricoliao, xavierxue, jinxxu\}

KoLA: Carefully Benchmarking World Knowledge of Large Language Models

Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xiaohan Zhang, Hanming Li, Chunyang Li,
Zheyuan Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin, Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu, Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang, Juanzi Li Tsinghua University
kola-benchmark@googlegroups.com

Text as a projection of the world: real knowledge ?

Evaluating Open-QA Evaluation

The Internal State of an LLM Knows When It's Lying

Amos Azaria
School of Computer Science,
Ariel University, Israel

Tom Mitchell
Machine Learning Dept, Carnegie Mellon University, Pittsburgh, PA
Statistical Knowledge Assessment for Large Language Models

Qingxiu Dong', Jingiing Xu ${ }^{2}$, Lingpeng Kong ${ }^{3}$, Zhifang Sui' and Lei ngxiu Dong', Jinging Xu^{2}, Lingpeng Kong ${ }^{3}$, Zhifang Sui' and Lei
INational Key Laboratory for ${ }^{2}$ Shanghai AI Lab ${ }^{\text {Shoor of Compter Science, Peking University }}{ }^{3}$ The University of Hong Kong 4 Carnegie Mellon University daxestu. pku. edu. cn, fjing Thingxue szffepeku.edu. cn, lpkecs. hku hk, leiliiecs. cmu ed

Measuring and Modifying Factual Knowledge in Large Language Models

Pouya Pezeshkpour
 Megagon Labs

pouya@megagon.ai

Evaluating Open-QA Evaluation

Cunxiang Wang ${ }^{1}$; Sirui Cheng ${ }^{2}$; Qipeng Guo ${ }^{3}$, Yuanhao Yue ${ }^{4}$, Bowen Ding ${ }^{1}$, Zhikun $\mathbf{X u}^{4}$, Yidong Wang ${ }^{1}$, Xiangkun Hu^{3}, Zheng Zhang ${ }^{3}$, and Yue Zhang ${ }^{1}$ 'School of Engineering, Westlake University, China
${ }^{2}$ Northeastern University, China; ${ }^{3}$ Amazon AWS AI; ${ }^{4}$ Fudan University, Chin \{wangcunxiang, zhangyue\}ewestlake. edu.cn

Language Models as Knowledge Bases?

Fabio Petroni ${ }^{1}$ Tim Rocktäschel ${ }^{1.2}$ Patrick Lewis ${ }^{1.2}$ Anton Bakhtin Yuxiang Wu ${ }^{1,2}$ Alexander H. Miller ${ }^{1}$ Sebastian Riedel Facebook AI Research
〈fabiopetroni, rockt, plewis, yolo, yuxiangwu, ahm, sriedel|@fb.com

LLM as Knowledge bases ？

?
\square ？ ．
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LLM as Knowledge bases?

Pub4Med > 35 million citations \rangle Hard to process...

But, this literature has already been "digested" during pre-training!

- Short answer: No ...
- Low global retrieval performances
- Correct predictions are mostly leaks
E.g: Monascus Pilosus produces monascin
- Some predictions are generics
E.g: Aspergillus Niger or Ergosterol

$$
\begin{aligned}
& \text { Prediction of } \\
& \text { the Fungus } \\
& \hline
\end{aligned}
$$

Prediction of the chemical

LLM as Knowledge bases?

PubLMed > 35 million citations \rangle Hard to process ...

But, this literature has already been "digested" during pre-training!

- Short answer: No ...
- Low global retrieval performances
- Correct predictions are mostly leaks
E.g: Monascus Pilosus produces monascin
- Some predictions are generics
E.g: Aspergillus Niger or Ergosterol

[^4]We need to extract the relation from the text !

We need to extract the relation from the text !

\qquad
\square
-

We need to extract the relation from the text!

Supervised

	precision	recall	f1
Seq2rel	$\mathbf{4 7 . 3}$	5.8	10.4
GPT-2	44.8	21.7	29.3
BioGPT	42.2	$\mathbf{2 6 . 5}$	$\mathbf{3 2 . 5}$

We need to extract the relation from the text !

Supervised

(Weakly) supervised

	precision	recall	f1
Seq2rel	$\mathbf{4 7 . 3}$	5.8	10.4
GPT-2	44.8	21.7	29.3
BioGPT	42.2	$\mathbf{2 6 . 5}$	$\mathbf{3 2 . 5}$

"The model is conditioned on a natural language instruction and/or a few demonstrations of the task and is then expected to complete further instances of the task simply by predicting what comes next."

LLM are Few shot learners

Use the representation learned during pre-training

```
Poor English input: I eated the purple berries.
Good English output: I ate the purple berries.
Poor English input: Thank you for picking me as your designer. I'd appreciate it.
Good English output: Thank you for choosing me as your designer. I appreciate it.
Poor English input: The mentioned changes have done. or I did the alteration that you
requested. or I changed things you wanted and did the modifications.
Good English output: The requested changes have been made. or I made the alteration that you
requested. or I changed things you wanted and made the modifications.
Poor English input: I'd be more than happy to work with you in another project.
Good English output: LLM completing ...
```


LLM are Few shot learners

[50, Use the representation learned during pre-training

```
Poor English input: I eated the purple berries.
Good English output: I ate the purple berries.
Poor English input: Thank you for picking me as your designer. I'd appreciate it.
Good English output: Thank you for choosing me as your designer. I appreciate it.
Poor English input: The mentioned changes have done. or I did the alteration that you
requested. or I changed things you wanted and did the modifications.
Good English output: The requested changes have been made. or I made the alteration that you
requested. or I changed things you wanted and made the modifications.
Poor English input: I'd be more than happy to work with you in another project.
Good English output: I'd be more than happy to work with you on another project.
```


LLM are Few shot learners

Demonstrations \downarrow
Archetypal
sentences

The task is to extract relations between organisms and chemicals from the input text.
INPUT: The antimicrobially active EtOH extracts of Maytenus heterophylla yielded a new dihydroagarofuran alkaloid, 1 beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran, together with the known compounds beta-amyrin, maytenfolic acid, ...

OUTPUT: Maytenus heterophylla produces 1 beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran. Maytenus heterophylla produces beta-amyrin. Maytenus heterophylla produces maytenfolic acid.

INPUT: Ten new ergosteroids, gloeophyllins $\mathrm{A}-\mathrm{J}(1-10)$, have been isolated from the solid cultures of Gloeophyllum abietinum.
OUTPUT: Gloeophyllum abietinum produces gloeophyllin A. Gloeophyllum abietinum produces gloeophyllin B. Gloeophyllum abietinum produces gloeophyllin C. Gloeophyllum abietinum produces gloeophyllin D. Gloeophyllum abietinum produces gloeophyllin I. Gloeophyllum abietinum produces gloeophyllin J.

INPUT: The present work describes the isolation of the cyclic peptides geodiamolides A, B, H and $I(1-4)$ from G. corticostylifera and their anti-proliferative effects against sea urchin eggs and human breast cancer cell lineages.
OUTPUT: G. corticostylifera produces geodiamolide A. G. corticostylifera produces geodiamolide B [...]
INPUT: Four new cyclic peptides, patellamide G (2) and ulithiacyclamides E-G (3-5), along with the known patellamides A-C (6-8) and ulithiacyclamide B (9), were isolated from the ascidian Lissoclinum patella collected in Pohnpei, Federated States of Micronesia.
OUTPUT: Lissoclinum patella produces patellamide G. Lissoclinum patella produces ulithiacyclamide E. Lissoclinum patella produces ulithiacyclamide F. Lissoclinum patella produces ulithiacyclamide B.

INPUT: Chemical investigation of Trogopterus faeces has led to the isolation of seven flavonoids. Their structures were elucidated by chemical and spectral analyses. In an anticoagulative assay, three kaempferol coumaroyl rhamnosides had significant antithrombin activity. This is the first report on the occurrence of flavonoid glycosides in Trogopterus faeces.
OUTPUT: Trogopterus faeces produces flavonoids. Trogopterus faeces produces kaempferol coumaroyl rhamnosides. Trogopterus faeces produces flavonoid glycosides.

INPUT: ** Abstract **
To fill \longrightarrow OUTPUT: [LLM completing ...]

LLM are Few shot learners

Demonstrations \downarrow Archetypal sentences

The task is to extract relations between organisms and chemicals from the input text.

INPUT: The antimicrobially active EtOH extracts of Maytenus heterophylla yielded a new dihydroagarofuran alkaloid, 1 beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran, together with the known compounds beta-amyrin, maytenfolic acid, ...

OUTPUT: Maytenus heterophylla produces 1beta-acetoxy-9alpha-benzoyloxy-dihydroagarofuran. Maytenus heterophylla produces beta-amyrin. Maytenus heterophylla produces maytenfolic acid.

INPUT: Ten new ergosteroids, gloeophyllins A-J (1-10), have been isolated from the solid cultures of Gloeophyllum abietinum.
OUTPUT: Gloeophyllum abietinum produces gloeophyllin A. Gloeophyllum abietinum produces gloeophyllin B. Gloeophyllum abietinum produces gloeophyllin C. Gloeophyllum abietinum produces gloeophyllin D. Gloeophyllum abietinum produces gloeophyllin I. Gloeophyllum abietinum produces gloeophyllin J.

INPUT: The present work describes the isolation of the cyclic peptides geodiamolides A, B, H and $I(1-4)$ from G. corticostylifera and their anti-proliferative effects against sea urchin eggs and human breast cancer cell lineages.
OUTPUT: G. corticostylifera produces geodiamolide A. G. corticostylifera produces geodiamolide B [...]
INPUT: Four new cyclic peptides, patellamide G (2) and ulithiacyclamides E-G (3-5), along with the known patellamides A-C (6-8) and ulithiacyclamide B (9), were isolated from the ascidian Lissoclinum patella collected in Pohnpei, Federated States of Micronesia.
OUTPUT: Lissoclinum patella produces patellamide G. Lissoclinum patella produces ulithiacyclamide E. Lissoclinum patella produces ulithiacyclamide F. Lissoclinum patella produces ulithiacyclamide B.

INPUT: Chemical investigation of Trogopterus faeces has led to the isolation of seven flavonoids. Their structures were elucidated by chemical and spectral analyses. In an anticoagulative assay, three kaempferol coumaroyl rhamnosides had significant antithrombin activity. This is the first report on the occurrence of flavonoid glycosides in Trogopterus faeces.
OUTPUT: Trogopterus faeces produces flavonoids. Trogopterus faeces produces kaempferol coumaroyl rhamnosides. Trogopterus faeces produces flavonoid glycosides.
INPUT: Indonesian specimens of the marine sponges Hyrtios erectus and H. reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5-hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline (7), and 6-hydroxy-3,4-dihydro-1-oxo-beta-carboline (9).

To fill
OUTPUT: Hyrtios erectus produces hyrtiosulawesine, Hyrtios erectus produces 5-hydroxyindole-3-carbaldehyde. Hyrtios erectus produces hyrtiosin B

We need to extract the relation from the text !

Supervised

	precision	recall	f1
Seq2rel	$\mathbf{4 7 . 3}$	5.8	10.4
GPT-2	44.8	21.7	29.3
BioGPT	42.2	$\mathbf{2 6 . 5}$	$\mathbf{3 2 . 5}$

(Weakly) supervised

The data is the main bottleneck

L虫TUS
text \neq output labels

The data is the main bottleneck

The data is the main bottleneck

text $=$ output labels

The data is the main bottleneck

input text

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now or the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CTIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijikie, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniget, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g, pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g, cheese).

The data is the main bottleneck

input text

Ochratoxin A (OTA) is a very important mycotoxin, and its research is focused right now o the new findings of OTA, like being a complete carcinogen, information about OTA producers and new exposure sources of OTA. Citrinin (CIT) is another important mycotoxin, too, and its research turns towards nephrotoxicity. Both additive and synergistic effects have been described in combination with OTA. OTA is produced in foodstuffs by Aspergillus Section Circumdati (Aspergillus ochraceus, A. westerdijkiae, A. steynii) and Aspergillus Section Nigri (Aspergillus carbonarius, A. foetidus, A. lacticoffeatus, A. niger, A. sclerotioniger, A. tubingensis), mostly in subtropical and tropical areas. OTA is produced in foodstuffs by Penicillium verrucosum and P. nordicum, notably in temperate and colder zones. CIT is produced in foodstuffs by Monascus species (Monascus purpureus, M. ruber) and Penicillium species (Penicillium citrinum, P. expansum, P. radicicola, P. verrucosum). OTA was frequently found in foodstuffs of both plant origin (e.g., cereal products, coffee, vegetable, liquorice, raisins, wine) and animal origin (e.g., pork/poultry). CIT was also found in foodstuffs of vegetable origin (e.g., cereals, pomaceous fruits, black olive, roasted nuts, spices), food supplements based on rice fermented with red microfungi Monascus purpureus and in foodstuffs of animal origin (e.g., cheese).

Expected relations

Aspergillus ochraceus - Ochratoxin A
Aspergillus westerdijkiae - Ochratoxin A Aspergillus steynii - Ochratoxin A

Monascus purpureus - Citrinin
Penicillium expansum - Citrinin

Creating controlled synthetic input text from the expected relations

What is inside a PubMed entry?

What do we need?

> J Nat Prod. 2002 Aug;65(8):1173-6. doi: 10.1021/np020009

5-hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios

Mostafa Salmoun ${ }^{1}$, Christine Devijver, Désiré Daloze, Jean-Claude Braekman, Rob W M van Soest
Affiliations + expand
PMID: 12193025 DOI: $10.1021 /$ np020009+

Abstract

Indonesian specimens of the marine sponges Hyrtios erectus and H . reticulatus were found to contain 5-hydroxytryptamine-derived alkaloids. Their structures were determined on the basis of their spectral properties. H. erectus contained hyrtiosulawesine (4), a new beta-carboline alkaloid, together with the already known alkaloids 5 -hydroxyindole-3-carbaldehyde (1), hyrtiosin B (2), and 5-hydroxy-3-(2-hydroxyethyl)indole (3). H. reticulatus contained the novel derivative 1,6-dihydroxy-1,2,3,4-tetrahydro-beta-carboline (11) together with serotonin (5), 6-hydroxy-1 methyl-1, $2,3,4$-tetrahydro-beta-carboline (7), and 6 -hydroxy- 3,4 -dihydro-1-oxo-beta-carboline (9).

MeSH terms

> Animals

>Chromatography, Thin Laye
> Indole Alkaloids / chemistry
> Indole Alkaloids / isolation \& purification*
> Indonesia
> Molecular Structure
> Nuclear Magnetic Resonance, Biomolecular
> Porifera / chemistry*
> Serotonin / analogs \& derivatives*
> Serotonin / chemistry
> Serotonin / isolation \& purification*
> Spectrophotometry, Ultraviolet
> Stereoisomerism

The abstract (What we want to generate)

Some keywords / keyphrases

What is inside a PubMed entry?

What do we need?

> J Nat Prod. 2002 Aug;65(8):1173-6. doi: 10.1021/np020009+
5-hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios

Mostafa Salmoun ${ }^{1}$, Christine Devijver, Désiré Daloze, Jean-Claude Braekman, Rob W M van Soest Affiliations + expand PMID: 12193025 DOI: 10.1021/np020009+

Abstract
Given a title, some keywords and the main findings (expected relations), create

MeSH terms

> Animals
> Chromatography, Thin Laye
> Indole Alkaloids / chemistry
> Indole Alkaloids / isolation \& purification*
> Indonesia
> Molecular Structure
> Nuclear Magnetic Resonance, Biomolecular
> Porifera / chemistry*
> Serotonin / analogs \& derivatives*
> Serotonin / chemistry
> Serotonin / isolation \& purification*
> Spectrophotometry, Ultraviolet
> Stereoisomerism
a scientific abstract
« Some keywords / keyphrases

The abstract (What we want to generate)

$$
5
$$

Original
article

 \section*{
 \section*{\section*{Synthetic generation}

 \section*{
 \section*{\section*{Synthetic generation}

 \section*{
 \section*{\section*{Synthetic generation}

 \qquad}}

\square
\square

(

(
\square

 \square \square \square

 ,
 -

Synthetic generation

$$
\square .
$$

Not all articles have MeSH

\author{

}

Keyword Extraction

Keyword Extraction

路

Synthetic generation

Keyword Extraction

Synthetic generation

- Keyword Extraction

L出TUS
eported relations ganism x, chemical b)
(organism y, chemical o)
(Cystoseira usneoides, Cystodione A) (Cystoseira usneoides, Cystodione B)
(Cystoseira usneoides, Amentadione-1'-Methyl Ether) (Cystoseira usneoides, Usneoidone E)

Class conversion:
Derivatives contraction: Numbering: \times

Main findings: Five Meroterpenoids and cystodiones A-D were isolated from Cystoseira usneoides.
Instructions: Given a title, a list of keywords and main findings,
create an abstract for a scientific article.
Title: Antioxidant and anti-inflammatory meroterpenoids from the
brown alga Cystoseira usneoides.
Keywords: proinflammatory cytokine tnfa, anti-inflammatory assays,
radical-scavenging activity, etc.
Main findings: Five Meroterpenoids and cystodiones A-D were isolate
from Cystoseira usneoides.
Abstract: [\because completing ...]

Synthetic generation

LeTUS
Original Reported relations (ganism x, chemical b)
(organism y, chemical)
(Cystoseira usneoides, Cystodione A)
(Cystoseira usneoides, Cystodione B)
(Cystoseira usneoides, Amentadione-1'-Methyl Ether) (Cystoseira usneoides, Usneoidone E)

Derivatives contraction: Numbering: \times

Main findings: Five Meroterpenoids and cystodiones A-D were isolated from Cystoseira usneoides.

Oindings verbaliser
tract: [. completing ...]

 Class conversion:
 Class conversion:
 Class conversion:

Synthetic generation

Abstract: The brown alga Cystoseira usneoides has been chemically studied to isolate and identify the bioactive compounds present in its tissues. In this study, five meroterpenoids and cystodiones A-D were isolated from the alga. The structures of these compounds were elucidated using spectroscopic techniques

- Output labels: (Cystoseira usneoides, Meroterpenoids) ; (Cystoseira usneoides, Cystodione A) ; (Cystoseira usneoides, Cystodione B) ; (Cystoseira usneoides, Cystodione C) ; (Cystoseira usneoides, Cystodione D)
\qquad

Which one is synthetic?

> J Nat Prod. 2009 Juli;72(7):1361-3. doi: 10.1021/np9001819.
Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system

Lukasz M Kutrzeba ${ }^{1}$, Daneel Ferreira, Jordan K Zjawiony
Affiliations + expand

Abstract

A search for biosynthetic precursors of salvinorin A (1) led to the isolation of a new neoclerodane diterpenoid hemiacetal mixture, salvinorins J (2), from the chloroform extract of Salvia divinorum. A leaf surface extraction method was used on S. divinorum, affording a chlorophyll-free extract containing predominantly neoclerodane diterpenoids, including the new salvinorins $\mathrm{J}(2)$ and 14 known analogues. Salvinorins J (2) represent an example of a neoclerodane hemiacetal (lactol) susceptible to mutarotation with the formation of an equilibrium mixture of C -17 epimers.

> J Nat Prod. 2009 Jul;72(7):1361-3. doi: 10.1021/np900181q.

Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system
Lukasz M Kutrzeba ${ }^{1}$, Daneel Ferreira, Jordan K Zjawiony
Affiliations + expand

Abstract

The neoclerodane system of Salvia divinorum has been found to undergo mutarotation, resulting in the formation of $\mathrm{c}-17$ epimers. This was confirmed through the isolation and identification of several compounds from the plant using a leaf surface extraction method. The compounds isolated include Salvinorin A (1), Salvinorin B (2), Salvinorins F-H (3-5), (-)-Hardwickiic acid (6) and divinatorins A-C (7-9). These findings provide new insights into the chemical diversity of Salvia divinorum and highlight the importance of considering mutarotation in the study of neoclerodane systems.

Which one is synthetic?

$\stackrel{\circ}{2}$
 Real

> J Nat Prod. 2009 Jul;72(7):1361-3. doi: 10.1021/np900181q.
Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system

Lukasz M Kutrzeba ${ }^{1}$, Daneel Ferreira, Jordan K Zjawiony
Affiliations + expand

Abstract

A search for biosynthetic precursors of salvinorin A (1) led to the isolation of a new neoclerodane diterpenoid hemiacetal mixture, salvinorins J (2), from the chloroform extract of Salvia divinorum. A leaf surface extraction method was used on S. divinorum, affording a chlorophyll-free extract containing predominantly neoclerodane diterpenoids, including the new salvinorins J (2) and 14 known analogues. Salvinorins J (2) represent an example of a neoclerodane hemiacetal (lactol) susceptible to mutarotation with the formation of an equilibrium mixture of C -17 epimers.

Y
 \because synthetic

> J Nat Prod. 2009 Jul;72(7):1361-3. doi: 10.1021/np900181q.

Salvinorins J from Salvia divinorum: mutarotation in the neoclerodane system

Lukasz M Kutrzeba ${ }^{1}$, Daneel Ferreira, Jordan K Zjawiony
Affiliations + expand

Abstract

The neoclerodane system of Salvia divinorum has been found to undergo mutarotation, resulting in the formation of $\mathrm{c}-17$ epimers. This was confirmed through the isolation and identification of several compounds from the plant using a leaf surface extraction method. The compounds isolated include Salvinorin A (1), Salvinorin B (2), Salvinorins F-H (3-5), (-)-Hardwickiic acid (6) and divinatorins A-C (7-9). These findings provide new insights into the chemical diversity of Salvia divinorum and highlight the importance of considering mutarotation in the study of neoclerodane systems.

Re-training on synthetic data

Supervised

(Weakly) supervised

Re-training on synthetic data

Supervised

(Weakly) supervised

Supervised - on synthetic data

$$
\because \text { text = output labels }
$$

model	precision	recall	f1
seq2rel	$65.1(+17.8)$	$29.9(+22.0)$	$41.0(+28.9)$
GPT2	$52.0(+7.2)$	$\underline{44.6}(+22.9)$	$48.0(+18.7)$
BioGPT	$\underline{63.7}(+21.5)$	$46.5(+20.0)$	$53.8(+21.3)$

Re-training on synthetic data

Supervised

(Weakly) supervised

Supervised - on synthetic data

model	precision	recall	f1				
seq2rel	$65.1(+17.8)$	$29.9(+22.0)$	$41.0(+28.9)$				
GPT2	$52.0(+7.2)$	$\underline{44.6}(+22.9)$	$48.0(+18.7)$				
BioGPT	$\underline{63.7}(+21.5)$	$46.5(+20.0)$	$53.8(+21.3)$				
$:$							
model					precision	recall	f1
BioGPT-Large	$\mathbf{6 9}$	$\mathbf{5 1 . 6}$	$\mathbf{5 9 . 0}$				

Conclusion: LLM are versatiles

- Fine-tuning: garbage in, garbage out!

Conclusion: LLM are versatiles

- Fine-tuning: garbage in, garbage out!
- Impressive few-shot learners, but language models above all

Conclusion: LLM are versatiles

- Fine-tuning: garbage in, garbage out !
- Impressive few-shot learners, but language models above all
- Better Synthetic Data Generator (Knowledge distillation)

Conclusion: LLM are versatiles

- Fine-tuning: garbage in, garbage out !
- Impressive few-shot learners, but language models above all
- Better Synthetic Data Generator (Knowledge distillation)
- Multi-lingual opportunities

Conclusion: LLM are versatiles

- Fine-tuning: garbage in, garbage out!
- Impressive few-shot learners, but language models above all
- Better Synthetic Data Generator (Knowledge distillation)
- Multi-lingual opportunities

But,

- Narrow range of "styles" compared to human-written abstracts
- Hard to control the quality
- LLM evolve fast (15 Feb. 2024 - BioMistral)

Thanks for your attention

Zっ https://github.com/idiap/abroad-re
En https://github.com/idiap/gme-sampler

RELATION EXTRACTION IN UNDEREXPLORED BIOMEDICAL DOMAINS: A DIVERSITY-OPTIMISED SAMPLING AND SYNTHETIC DATA GENERATION APPROACH

A Preprint
Maxime Delmas ${ }^{51}$, Magdalena Wysocka ${ }^{2}$, and André Freitas ${ }^{1.23}$
1 Idiap Research Institute, Swizerland
${ }^{2}$ Digital Experimental Cancer Medicine Team, CCancer Biomarker Centre, CRUK Manchester Institute ${ }^{3}$ Cancer Medicine Team, Cancer Biomarker Centre, CRUK
arxiv https://arxiv.org/pdf/2311.06364.pdf

B Original dataset Pre-processed dataset

Diversity sample

Biological Kingdoms | Archaeplastida |
| :--- |
| Fungi |
| Metazoa |
| Not Atrributed (Bacteria or Algae) |

C

F Organisms

Chemicals

Datasets

16%
32%
46\%

68\%

Biological Kingdoms

	Archaeplastida
Fungi	
Metazoa	
Not Attributed (Bacteria or Algae)	

- Wikidata chemicals
--- Wikidata organisms

chemicals organisms relations Number of entities

model	Training	precision	recall	f1
Llama-7B	Few-shots learning (5-shots)	27.0	9.04	13.55
Llama-13B		35.64	23.64	28.49
Llama-30B		38.51	$\underline{23.24}$	28.99
Llama-65B		40.16	22.97	$\underline{29.23}$
Alpaca-7B		15.14	2.21	5.86
Vicuna-13B		38.4	20.43	26.48
Seq2rel	Random-raw	43.2 +/- (6.67)	$4.8+$ +- (1.16)	$8.6+/-(2.00)$
	Diversty-raw	39.6	5.4	9.5
	Extended-raw	47.3	5.8	10.4
	Full	45.6	7.1	12.2
GPT2-QLoRA	Random-raw	$32.5+/-(4.83)$	$11.8+/-(5.25)$	$15.0+/-(2.54)$
	Diversty-raw	22.3	19.2	20.6
	Extended-raw	44.8	21.7	29.3
	Full	47.5	22.5	30.5
BioGPT-QLoRa	Random-raw	47.2 +/- (4.01)	19.8 +/- (2.71)	27.6 +/- (2.48)
	Diversty-raw	37.1	28.4	32.2
	Extended-raw	42.2	26.5	32.5
	Full	46.7	21.3	29.3

model	Dataset	precision	recall	f1
Seq2rel	Random-synt.	$62.4+/-(1.03)$	$26.8+/-(1.96)$	$37.5+/-(1.90)$
	Diversty-synt.	61.5	30.7	40.1
	Extended-synt.	$\mathbf{6 5 . 1}$	29.9	41.0
	Random-synt.	$42.6+/-(2.89)$	$32.7+/-(2.81)$	$37.2+/-(2.80)$
	Diversty-synt.	28.5	39.4	33.0
	Extended-synt.	52.0	44.6	48.0
BioGPT-QLoRa	Random-synt.	$56.4+/-(2.26)$	$38.8+/-(1.92)$	$46.0+/-1.08$
	Diversty-synt.	53.1	41.6	46.6
	Extended-synt.	$\underline{63.7}$	$\mathbf{4 6 . 5}$	$\mathbf{5 3 . 8}$

[^0]: A．Ruiz et al．，‘The LOTUS initiative for open knowledge management in natural products research＇，eLife，vol．11，p．e70780，May 2022，doi：10．7554／eLife．70780

[^1]: \qquad

 \author{

 }

[^2]: ## Attention is all you need

 A Vaswani, NShazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc
 ... to attend to all positions in the decoder up to and including that position. We need to prevent ... We implement this inside of scaled dot-product attention by masking out (setting to $-\infty$) ..
 \approx Enregistrer 90 Citer Cité 110783 fois Autres articles Les 62 versions $\sum 8$
 \square

 \qquad 0

[^3]: Bert: Pre-training of deep bidirectional transformers for language understanding
 JDe Electra: Pre-training text encoders as discriminators rather than generators
 $2018 \frac{\text { K Clark, }}{\text { I.. back-p }}$ Roberta: A robustly optimized bert pretraining approach
 is … gains f
 YLiu, M Ott. N Goyal. J Du, M Joshi, D Chen ... - arXiv preprint arXiv 2019 - arxiv.org
 .. We find that BERT was significantly undertrained and propose an improved ... BERT
 models, which we call RoBERTa, that can match or exceed the performance of all of the post-BERT
 ¿ Enregistrer 90 Citer Cité 9454 fois Autres articles Les 6 versions 80
 $\stackrel{\Delta}{\Sigma}$ Enregむ Enregistrer 90 Citer Cité 9454 fois Autres articles Les 6 versions 00

[^4]: Kandpal, N., Deng, H., Roberts, A., Wallace, E., Raffel, C., 2023. Large Language Models Struggle to Learn Long-Tail Knowledge

